Where are we with green biorefineries?

Rafal Lukasik

National Laboratory of Energy and Geology, Unit of Bioenergy, Lisbon, Portugal e-mail: <u>rafal.lukasik@lneg.pt</u>

MINISTÉRIO DO AMBIENTE, ORDENAMENTO DO TERRITÓRIO E ENERGIA

Biorefinery and the role of Green Chemistry

What ionic liquids are?

Properties of ILs

- High polarity
- Negligible volatility
- Thermal stability
- High conductivity
- Large electrochemical window

Solvent power

Properties of ILs can be tailored, e.g.:

- Density and Viscosity
- Solubility
- Lipophilicity and polarity

1-ethyl-3-methylimidazolium acetate

The toxicity and biodegradability of ionic liquids are an issue

Pre-treatment of biomass with ILs

- 1) Alter the physicochemical properties of the biomass macromolecular components;
- 2) Extract a specific macromolecular fraction;
- 3) Perform different fractionation approaches after dissolution.

Advantages:

- \downarrow Cellulose crystallinity;
 - ↑ Extraction of lignin
 - Less degradation of monosaccharides;
 - Recyclability and reuse of ILs.

3-step fractionation

S. P. Magalhães da Silva, A. M. da Costa Lopes, L. B. Roseiro and R. Bogel-Lukasik, *RSC Adv.*, 2013, **3**, 16040. A. M. da Costa Lopes, R. Bogel-Łukasik, Portuguese Provisory Patent (106947), 2013. Ionic liquid recovery (96% but can be more)

3-step fractionation

Hemicellulose

FTIR spectra of carbohydrate samples

Results with ILs

Results with different types of biomass

Enzymatic hydrolysis

A. M. da Costa Lopes, K. João, D. Rubik, E. Bogel-Lukasik, L. C. Duarte, J. Andreaus and R. Bogel-Lukasik, Bioresource Technol., 2013, 142, 198-208

CE analysis of recovered [emim][CH₃COO]

ILs recovery yields were generally up to 90% (w/w).

S. P. Magalhães da Silva, A. M. da Costa Lopes, L. B. Roseiro and R. Bogel-Lukasik, RSC Adv., 2013, 3, 16040.

140°C.

CE analysis of recovered [emim][CH₃COO]

13

S. P. Magalhães da Silva, A. M. da Costa Lopes, L. B. Roseiro and R. Bogel-Lukasik, RSC Adv., 2013, **3**, 16040.

Phenolic extraction from recovered IL

CE of extracted samples by Amberlite XAD-7

CE of extracted samples by resin and CO₂ treatment

[bmim][HSO₄] solvent and catalyst for biomass

1-butyl-3-methylimidazolium hydrogen sulphate

Methodology for [bmim][HSO₄]

A. V. Carvalho, A. M. da Costa Lopes and R. Bogel-Lukasik, RSC Adv., 2015, 5, 47153.

Conversion of biomass with [bmim][HSO₄]

A. V. Carvalho, A. M. da Costa Lopes and R. Bogel-Lukasik, RSC Adv., 2015, 5, 47153.

Fermentation in ILs

Possible products (at least up to now...)

- 1) Ethanol
- 2) Lipids
- 3) Organic acids (succinic acid)

Fermentation in ILs

Microorganism		Ionic Liquid		Incubation conditions			Product		
Family	specie	Туре	Concentration	т (°С)	t (h)	Substrate		Yield (%)	Ref.
Fungi	Fusarium oxysporum BN	[emim][H2PO2]	-	35	192	rice straw	ethanol	0.125g/g biomass (64.2% theoretical)	Xu, 2015
Yeast	Rhodosporidium Toruloides	[emim][Cl]	[30 - 60] mM	30	100	glucose	Lipids	~ [12 - 11] g.L-1	. Huang, 2013
		[emim][DEP]	[30 - 60] mM	30	100	glucose		~ [10 -8] g.L-1	
		[emim][OAc]	[30 - 60] mM	30	100	glucose		~ [2 - 1] g.L-1	
	Saccharomyces Cerevisiae	[emim][Cl]	100 mM	30	6	glucose		~ 18 g.L-1	Ouellet, 2011 Nakashima, 2011
		[emim][DEP]	100 mM	30	6	glucose	ethanol	~ 17 g.L-1	
		[emim][DEP]	200 mM	34	170	cellulose		~ 1.5 g.L-1	
		[emim][OAc]	100 mM	30	6	glucose		~ 17 g.L-1	
		[emim][OAc]	[5.90 - 33.5] mM	30	72	glucose		~ [10 - 9] g.L-1	
			[52.4 - 59.0] mM	30	72	glucose		~ 2 g.L-1	
Bacteria	Actinobacillus succinogenes	[amim][Cl]	0.01 %	37	12	glucose	Succinic acid	14.65 g.L-1	Wang, 2014
			0.1 %	37	12	glucose		16.00 g.L-1	
			1.0 %	37	12	glucose		12.41 g.L-1	
			-	37	12	Pinewood		0.24 g/gbiomass	
			-	37	12	corn stover		0.09 g/gbiomass	
			-	37	12	SE-corn stover		0.31 g/gbiomass	
			-	37	12	HCW-corn stover		0.27 g/gbiomass	

A. M. da Costa Lopes, R. Bogel-Łukasik, in preparation, 2015.

Fermentation in ILs

Supercritical fluids

Supercritical fluids (SCFs) are defined as substances above their critical temperature, T_c , and critical pressure, p_c .

- Unique physicochemical properties such as liquidlike density and gaslike diffusivity
- Tunable properties
- Environmentally sustainable
- □ Easily to scale up

Typical fluids: CO_2 , H_2O , propane, butane

	Density (g/mL)	Viscosity (P)
gas	~10 ⁻³	0.5-3.5.10-4
ScF	0.2-0.9	0.2-1.0·10 ⁻³
liquid	0.8-1.2	0.3-2.4.10-4

Supercritical fluids

1st acoustic measurement of a Critical Point

Baron Cagniard de La Tour

Baron Charles Cagniard de La Tour discovered the critical point of a substance in his famous cannon barrel experiments. Listening to discontinuities in the sound of a rolling flint ball in a sealed cannon filled with fluids at various temperatures, he observed the critical temperature.

Proprieties of supercritical fluids

CO₂-H₂O mixture advantages

- Sustainable and green solvent
- GRAS generally recognized as safe
- □ Nontoxic, nonflammable and inexpensive reagent
- \Box \downarrow Temperatures and \downarrow degradation products
- It can act as a detoxification methodology

Water-only reaction

H↓2 0 ≓ H↓3 0 î+ +0H-

CO₂ + H₂O binary system

□ Mixture becomes more acidic (pH \approx 3) \longrightarrow \uparrow dissolution of hemicellulose \uparrow Enzymatic digestibility of cellulose

$\textbf{CO} \downarrow \textbf{2} + \textbf{2} \textbf{H} \downarrow \textbf{2} \textbf{ O} \leftrightarrow \textbf{H} \textbf{CO} \downarrow \textbf{3} \uparrow \textbf{-} + \textbf{H} \downarrow \textbf{3} \textbf{ O} \uparrow \textbf{+}$

$HCOJ3\uparrow + HJ2 O \leftrightarrow COJ3\uparrow 2 - + HJ3 O\uparrow +$

Estimated pH $pH=8.00\times10$ $f-6\times T$ $f2 + 0.00209\times T - 0.216\times \ln(P \downarrow CO \downarrow 2) + 3.92*$

50 bar of CO ₂	20 / 35 bar of CO ₂	A.H
3.72	3.78	5.5 (at 220ºC)

*G.P. van Walsum, Appl. Biochem. Biotechnol., 91-3 (2001) 317.

Pre-treatment system.

Effect of CO₂ addition to water-only reaction

The in situ formed carbonic acid enhances the hydrolysis of hemicellulose

*Carvalheiro, F., Silva-Talita, T., Duarte, L. and Gírio, F., Wheat Straw Autohydrolysis: Process Optimization and Products Characterization. *Applied Biochemistry and Biotechnology*, 2009. **153**(1-3). 84-93.

Effect of initial CO₂ pressure

Relvas, F. M., Morais, A. R. C., Bogel-Lukasik, R. (2015). Kinetic modeling of hemicellulose-derived biomass hydrolysis underhigh pressure CO2–H2O mixture technology. J. Supercrit. Fluid., 2015, **99**, 95-102.

Production of volatile products

Furfural concentration in the recovered gas phase from depressurization for studied temperatures and biomass loading.

Detoxification effect during depressurization

Magalhães da Silva, S. P., Morais, A. R. C., Bogel-Lukasik, R. (2015). The CO2-assisted autohydrolysis of wheat straw. Green Chem., 2014, 16, 238-246.

Effect of process on the ultrastructure of residue

Morais, A. R. C., Mata, A. C., Bogel-Lukasik, R. (2014). Integrated conversion of agroindustrial residue with high pressure CO₂ within biorefinery concept. Green Chem., 2014, **16**, 4312-4322

Effect of CO₂ pressure (chemical and physical)

Morais, A. R. C., Mata, A. C., Bogel-Lukasik, R. (2014). Integrated conversion of agroindustrial residue with high pressure CO₂ within biorefinery concept. Green Chem., 2014, **16**, 4312-4322

Morais, A. R. C., Mata, A. C., Bogel-Lukasik, R. (2014). Integrated conversion of agroindustrian Green Chem., 2014, 16, 4312-4322

ressure CO₂ within biorefinery concept.

With green solvents we can (up to now):

- Pre-treat and fractionate biomass to high purity fractions
- Produce sugars (C₅ and C₆ solutions selectively)
- Tune the process to obtain value-added compounds directly (e.g. oligosaccharides, vanillin) and selectively (xylose or furfural)
- Perform fermantation in green solvents

Acknowledgments

COST EUBIS TD1203 Food waste valorisation for sustainable chemicals, materials & fuels

Pesquisador Visitante Especial 155/2012

Fundação para a Ciência e a Tecnologia

Bilateral project between Portugal and Brazil

IF/00424/2013

Ana R. C. Morais Andre M. da Costa Lopes Frederico Relvas Ana V. Carvalho Ana Mata Karen João Miriam Brenner Andreia Toscan Sara Magalhães da Silva Marcoaurelio Rodrigues Linda Gonçalves Lucinda Conceição Jonatam D. Rubik Márcia Ribeiro Susana Peleteiro

Florbela Carvalheiro Luís C. Duarte Luisa B. Roseiro Elvira Fortunato Filipe Neves Ewa Bogel-Lukasik Jurgen Andreaus Francisco Gírio Juan Carlo Parajó

FOREWARD by T. Welton

1. Biorefinery and Green Chemistry by J.-P. Mikkola

2. The dissolution of biomass in ionic liquids towards pretreatment approach by **C. Afonso**

3. Ionic Liquid Pre-treatment of Lignocellulosic Biomass for Biofuels and Chemicals by **S. Singh**

4. Biomass Hydrolysis in Ionic Liquids by **R. Martínez-**Palou

5. Relevance of Biomass Feedstocks for Ionic Liquidassisted Extraction of Biomolecules by **R. Bogel-Lukasik**

6. Toxicity and Bio-Acceptability in the Context of Biological Processes in Ionic Liquid Media by **N. Gathergood**

7. Synthesis of HMF in Ionic Liquids – Biomass derived product by **G.-W. Jang**

8. Ionic liquids as efficient tools for the purification of biomolecules and bioproducts from natural sources by **M. G. Freire**

9. Ionic Liquids in the Biorefinery: How Green and Sustainable are they? by **R. A. Sheldon**

10. Future of ionic liquid biorefineries by A. Stark

RSC Green Chemistry

lonic Liquids in the Biorefinery Concept

Challenges and Perspectives

Edited by Rafal Bogel-Lukasik

rafal.lukasik@lneg.pt