

LIPID EXTRACTION FROM Chlorella vulgaris USING ELECTROMAGNETIC FIELD

CATALINA BERNAL-LÓPEZ ^{A,B}; JORGE E. LÓPEZ-GALÁN ^A

^A School of Chemical Engineering, Biofuels and Biorrefinery Research Group - GRUBIOC, Universidad del Valle, Cali, Colombia

^B School of Food Engineering, Group of Research on Engineering of Agrofood and Biotechnological Processes - GIPAB, Universidad del Valle, Cali, Colombia

> ^{A,B} catalia.bernal.lopez@correounivalle.edu.co, ^A jorge.lopez@correounivalle.edu.co

INTRODUCTION

Aqueous surfactantassisted extraction or "ASE" and the use of magnetic field or ultrasound.

METHODOLOGY

MICROALGAE BIOMASS PRODUCTION

Table 1. Components of the culture medium formicroalgae biomass production at pH 6.75 ± 0.5

COMPOUND	TOTAL COMPOSITION (mg/L)
Total nitrogen	60
Ammonia nitrogen	13.7
Nitric nitrogen	22.3
Phosphorus	16
Water-soluble Potassium	5.3
Calcium	13.1
Magnesium	8.2

METHODOLOGY

Table 2. Level and Variables involved in both treatments(Response surface metodology Box -Benhken)

	MAGNET	IC FIELD TREATMEN	NT	
LEVEL	TEMPERATURE (°C)	MOISTURE (%)	MAGNETIC FLUX DENSITY (mT)	
-1	30	85	55	
0	45	91	185	
+1	60	97	316	12 Treatmon
	ULTRAS	SOUND TREATMENT	•	
LEVEL	TEMPERATURE (°C)	MOISTURE (%)	POWER (W)	
-1	30	85	20	—
0	45	91	110	
+1	60	97	200	

METHODOLOGY

RESULTS AND DISCUSSION

Table 3. Lipid extraction of *Chlorella vulgaris* at differentconcentrations of SDS without cell disruption.

SDS	SDS SDS Oil extraction		g lipid/g dried microalgal			
(%)	(%) (Moles) yield (%)		biomass			
1	0,035	0	0			
3	0,104	3,76	4,6E-3			
4	0,139	5,56	5,9E-3			
5	0,173	6,84	7,5E-3			
20	0,693	8,47	1,5E-2			
50	1,73	3,25	5,4E-3			
	Treatment	at 20% SDS	g lipid/g dried microalgal biomass			
Magnetic fields		Without disruption	2,16E-3			
		Disruption	1,13E-2	-		
Ultrasonic bath		Without disruption	1,30E-3			
		Disruption	16453	_		

MAGNETIC FIELD TREATMENT (R²=89.52%)

Table 4. ANOVA for experimental results.

Source	Sum of squares	Mean Square	<i>F</i> -ratio	<i>p</i> -Value
А	1,066	1,066	10,74	0,022
В	0,195	0,195	1,97	0,219
С	0,419	0,419	4,22	0,095
AA	0,461	0,461	4,64	0,084
AB	0,006	0,006	0,06	0,821
AC	0,601	0,601	6,05	0,057
BB	0,0007	0,0007	0,01	0,934
BC	0,16	0,16	1,61	0,260
CC	0,223	0,223	2,25	0,194
Error total	0,496	0,099		
Total (corr.)	3,593			

Figure 2. A. Pareto diagram. B. Principal effects. A:Temperature, B:Magnetic Flux (Magnetic field treatment), C:Moisture

Table 5. MAGNETIC FIELD TREATMENT RESULTS

Temperature (°C)Magnetic flux (mT)	Moisture (%)	Oil extraction yield (%)	g lipid/g dried microalgal biomass
45,0	185,50	0,91	9,11	0,0047
30,0	185,5	0,85	12,05	0,0061
45,0	55,0	0,97	5,63	0,0029
60,0	316,00	0,91	18,12	0,0092
45,0	185,5	0,91	8,04	0,0041
45,0	55,0	0,85	8,57	0,0044
60,0	185,50	0,97	39,64	0,0203
30,0	316,0	0,91	10,45	0,0052
45,0	316,0	0,97	24,29	0,0123
45,0	316,0	0,85	13,66	0,0098
30,0	185,50	0,97	10,62	0,0000
60,0	185,5	0,85	14,73	0,0074
60,0	55,0	0,91	20,63	0,0103
30,0	55,0	0,91	10,36	0,0053
45,0	185,5	0,91	10,18	0,0034

ULTRASOUND TREATMENT (R²=93.65%)

 Table 6. ANOVA for experimental results.

Sourco	Sum of	Mean	E ratio	n Value
Source	squares	Square	F-ratio	p-value
А	0,5442	0,5443	12,82	0,016
В	0,9832	0,9832	23,16	0,005
С	0,0667	0,0667	1,57	0,265
AA	0,0501	0,0501	1,18	0,327
AB	0,3256	0,3255	7,67	0,039
AC	0,2794	0,2794	6,58	0,050
BB	0,4708	0,4708	11,09	0,021
BC	0,3567	0,3566	8,40	0,034
CC	0,4814	0,4814	11,34	0,019
Error total	0,2123	0,0424		
Total (corr.)	3,348			

Figure 3. A. Pareto diagram. B. Principal effects. A:Temperature, B:Power (Ultrasound treatment), C:Moisture

Table 7. ULTRASOUND TREATMENT RESULTS

Power (W)	Moisture (%)	Temperature (°C)	Oil extraction yield (%)	g lipid/g dried microalgal biomass
110	0,97	45	22,906	0,01267
110	0,85	30	9,934	0,00549
20	0,97	45	14,122	0,00787
200	0,91	60	26,519	0,01453
110	0,91	45	14,368	0,00791
20	0,85	45	9,031	0,00484
110	0,91	60	17,734	0,00952
200	0,97	30	14,286	0,00796
200	0,97	45	13,629	0,00753
200	0,91	45	16,995	0,00833
110	0,91	60	20,279	0,01118
20	0,85	60	8,498	0,00476
20	0,91	30	1,779	0,00098
110	0,91	45	16,256	0,00864
110	0,91	45	14,450	0,00793

CONCLUSIONS

- Aqueous surfactant-assited extraction (ASE), with the use of magnetic field and ultrasound, it's a clean process easily adapted for microalgae lipid extraction.
- High treatment temperature significantly impacted on lipid extraction for both treatments.
- The only drawback is that the yield is still below of the conventional method. However, the use of magnetic field, ultrasound with SDS, corroborates that the method allows an extraction with good yield, less pollution and significant economic and safety benefits.

ACKNOWLEDGEMENTS

The authors greatefully acknowledge the <u>Colciencias young</u> research program. Special thanks are extended to staff of **Research Group in Environmental Sciences and Earth ILAMA** (Universidad del Valle), specially to <u>Dr Orlando Zuñiga</u> and <u>Master</u> <u>Cristian Jimenez</u> for constant encouragement.

REFERENCES

[1] Brennan, L., & Owende, P. (2010). Biofuels from microalgae—A review of technologies for production, processing, and extractions of biofuels and co-products. *Renewable and Sustainable Energy Reviews*, *14*(2), 557–577.

[2] Gouveia, L. (2011). Microalgae as a feedstock for biofuels.

[3] Richmond, A., 2004. Handbook of Microalgal Culture: Biotechnology and Applied Phycology. Blackwell, Oxford.

[4] Gonzalez A.D., Kafarov V., Monsalve A. Development of methods of extraction of oil in the production line of biodiesel from microalgae. (2009). Prospect. Vol. 7, No. 2, pages. 53-60

[5] Tuntiwiwattanapun, N., Tongcumpou, C., Haagenson, D., & Wiesenborn, D. (2013). Development and Scale-up of Aqueous Surfactant-Assisted Extraction of Canola Oil for Use as Biodiesel Feedstock. *Journal of the American Oil Chemists' Society*, *90*(7), 1089–1099.

[6] Rosen MJ (2004) Surfactant and interfacial phenomena, 2nd edn. Wiley, New York

[7] Campbell KA, Glatz CE (2009) Mechanisms of aqueous extraction of soybean oil. Agric Food Chem 57:10904–10912

[8] Do LD, Sabatini DA (2011) Pilot scale study of vegetable oil extraction by surfactant-assisted aqueous extraction process. Sep Sci Technol 46:978–985

[9] Thidé, B. (2004). *Electromagnetic Field Theory*.

[10] Li, Zhi-Yong, Si-Yuan Guo, Lin Li, and Miao-Yan Cai. 2006. "Effects of electromagnetic field on the batch cultivation and nutritional composition of Spirulina platensis in an air-lift photobioreactor." *Bioresource technology* 98(3): 700–5.

[11] Fang C.S., Lai P.M.C., Chang B.K.L., Klaila W.J., 1989. Oil recovery and waste reduction by microwave radiation. Environmental Progress. vol. 8. pages. 235-238.

[12] Amiri, M. C. (2006). Efficient separation of bitumen in oil sand extraction by using magnetic treated process water. *Separation and Purification Technology*, *47*(3), 126–134.

[13] Higashitani K., Kage A., Katamura S., Imai K. and Hatade S., "Effects of a Magnetic Field on the Formation of CaCO3 Particles," Journal of Colloid and Interface Science, Vol. 156, No. 1, 1993, pp. 90-95.

[14] Chibowski E., Hołysz L., Szcze's A. Time dependent changes in zeta potential of freshly precipitated calcium carbonate, ColloidsSurf.A222(2003) 41–54

[15] Parsons S. A., Wang B. L., Judd S. J., and Stephenson T, "Magnetic Treatment of Magnetic Treatment of Calcium Carbonate Scale—Effect of pH Control," Water Research 31 (1997): 339

[16] Schmall, Schweiz. Brau.-Rundschau 1953; A. Schmall, Chem. Abstr. 47 (1954) 2932.

[17] Cravotto, G., Boffa, L., Mantegna, S., Perego, P., Avogadro, M., Cintas, P., (2008). Improved extraction of vegetable oils under high-intensity ultrasound and/or microwaves. Ultrason. Sonochem. 15, 898–902.

[18] Bligh, E.G., Dyer, W.J., 1959. A rapid method for total lipid extraction and purification. Can. J. Biochem. Physiol. 37, 911–917.

[19] Kadioglu SI, Phan TT, Sabatini DA (2011) Surfactant-based oil extraction of corn germ. J Am Oil Chem Soc 88:863–869

[20]Naksuk A, Sabatini DA, Tongcumpou C (2009) Microemulsion- based palm kernel oil extraction using mixed surfactant solutions. Ind Crops Prod 30:194–198

[21] Halim R., Danquah Michael K., Webley Paul A. (2011). Extraction of oil from microalgae for biodiesel production: A review. Biotechnology Advances 30, 709–732

Thank you for your attention

MSc. CATALINA BERNAL LÓPEZ E-mail: grubioc@univalle.edu.co

