

Upgrading of low-grade biogenic feedstock by innovative screw pyrolysis

Marco Tomasi Morgano, Hans Leibold, Frank Richter

INSTITUTE FOR TECHNICAL CHEMISTRY, DEPT. OF PYROLYSIS AND GAS CLEANING

KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

Outline

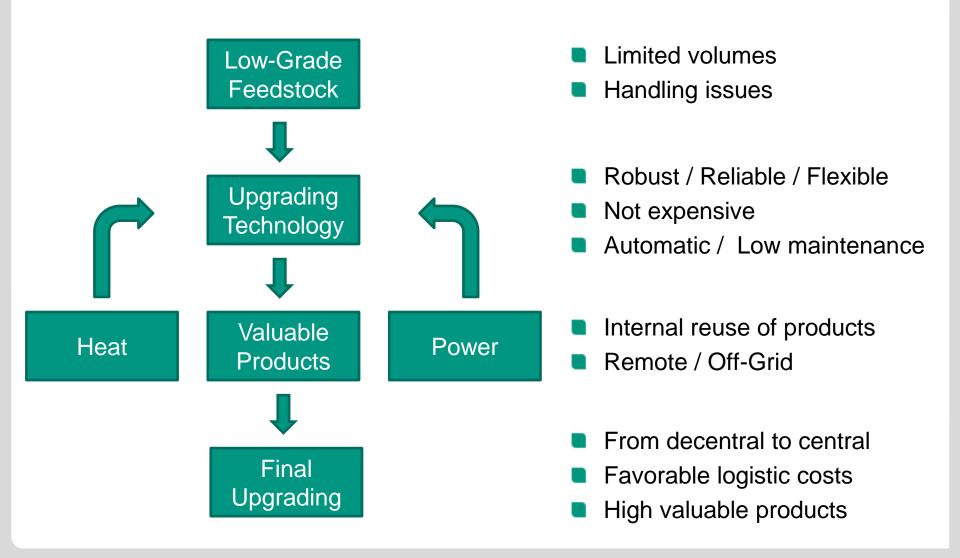
Motivation

- STYX an innovative screw pyrolysis technology
- Research with wood
- Low-grade biogenic feedstocks at STYX
- Potential applications
- Conclusion

Low-grade biogenic feedstock

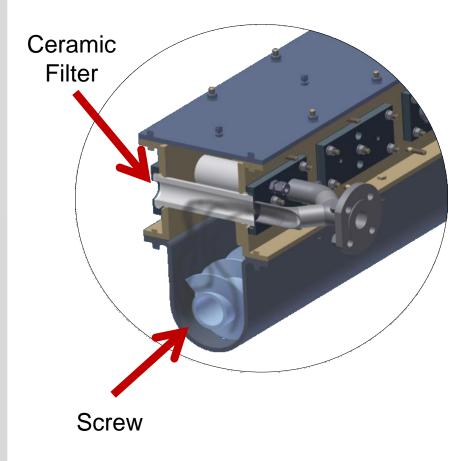
"Low-Grade biogenic feedstocks are an unexploited resource and are spread among the territory"

- High inorganic content
- High ash content
- Variable composition
- Low energy content
- High storage / logistic costs


Agricultural residues

Animal residues

Decentral upgrading

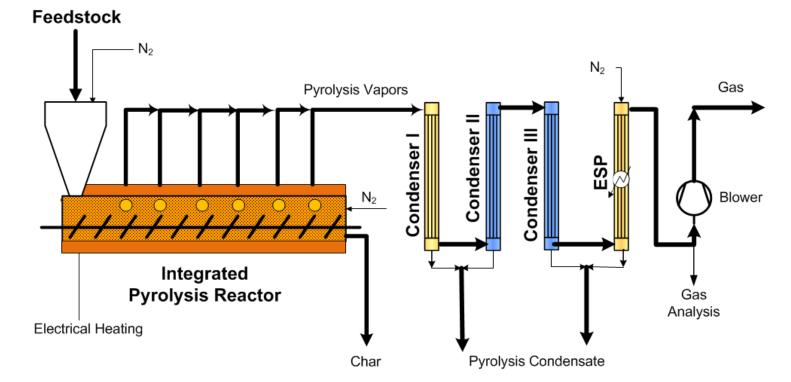


4 03.12.2015 MSc. Marco Tomasi Morgano – Upgrading of low-grade biogenic feedstock by innovative screw pyrolysis Inst Biorefineries, 23 to 25 November, Concepción-Chile

Innovative screw pyrolysis technology

STYX Reactor

- Trough screw reactor with integrated hot gas filters
- Heating rate 100 200 K/min
- Contact residence time vapors - solids < 2 s</p>
- Narrow temperature and residence time distributions in the reactor
- Heat exchange by trough / screw
- Sequential separation of vapors along the reactor (optional)
- Particle-free vapors and gases



6 03.12.2015 MSc. Marco Tomasi Morgano – Upgrading of low-grade biogenic feedstock by innovative screw pyrolysis Ins Biorefineries, 23 to 25 November, Concepción-Chile

Plant schema & data

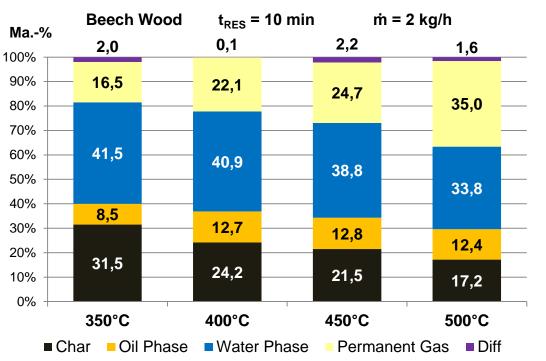
Reactor Data

Flow Rate	< 10	Kg/h
Temperature	< 600	°C
Residence time	5 - 25	Min
Heated length	2000	mm
Screw Diameter	150	mm

Filtration Data

N° Elements	2 – 14		
Length	200	mm	
Diameter	60	mm	
Material	SiC		
Online recleaning			
			•

Operation Data


Time (2012-2015)	3000	h
Material (2012-2014)	7,5	tons
Main Feedstocks:		
Wood chips, wheat stra manure, sewage sludg	•	

7

03.12.2015 MSc. Marco Tomasi Morgano – Upgrading of low-grade biogenic feedstock by innovative screw pyrolysis Biorefineries, 23 to 25 November, Concepción-Chile

Process & feedstock flexibility

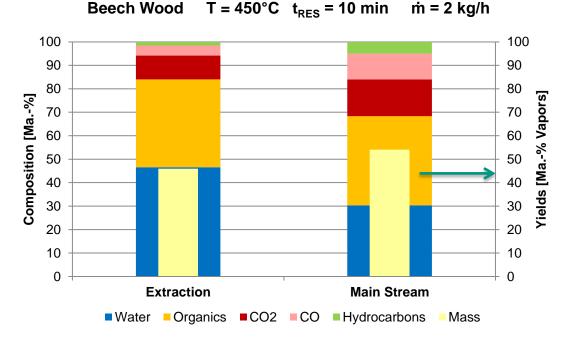
- Mass / Energy balance
- Design and control of products yields and properties
- Optimization
- Kinetics investigations on bench scale
- Process simulation and system analysis

Temperature [°C]	Char [MJ/kg]	Oil Phase [MJ/kg]	Water Phase [MJ/kg]	Gas [MJ/kg]	Viscosity Oil [mPa s]
350	26.5	19.0	5.0	3.4	75
400	28.9	20.6	6.3	6.5	106
450	29.5	21.0	3.2	8.5	163
500	31.0	22.4	1.5	12.6	132

03.12.2015 MSc. Marco Tomasi Morgano – Upgrading of low-grade biogenic feedstock by innovative screw pyrolysis Biorefineries, 23 to 25 November, Concepción-Chile

• Local balance \rightarrow displacement of the filters along the screw reactor

• Multi-Step to One-Step \rightarrow reduction of the drying process requirements

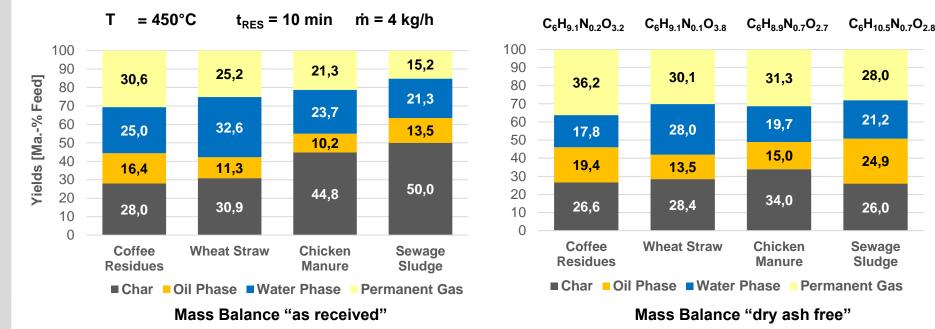

- Release of moisture water and CO₂ in the early stage
- Targeted extraction of low calorific species
- Concentration of acids and aldehydes in the extracted stream
- Increase of the heating value of the main stream

9 03.12.2015 MSc. Marco Tomasi Morgano – Upgrading of low-grade biogenic feedstock by innovative screw pyrolysis
 Biorefineries, 23 to 25 November, Concepción-Chile

Institute for Technical Chemistry Dept. of Pyrolysis and Gas Cleaning

Sequential extraction and filtration

Low-grade biomass conversion **Balance and properties**



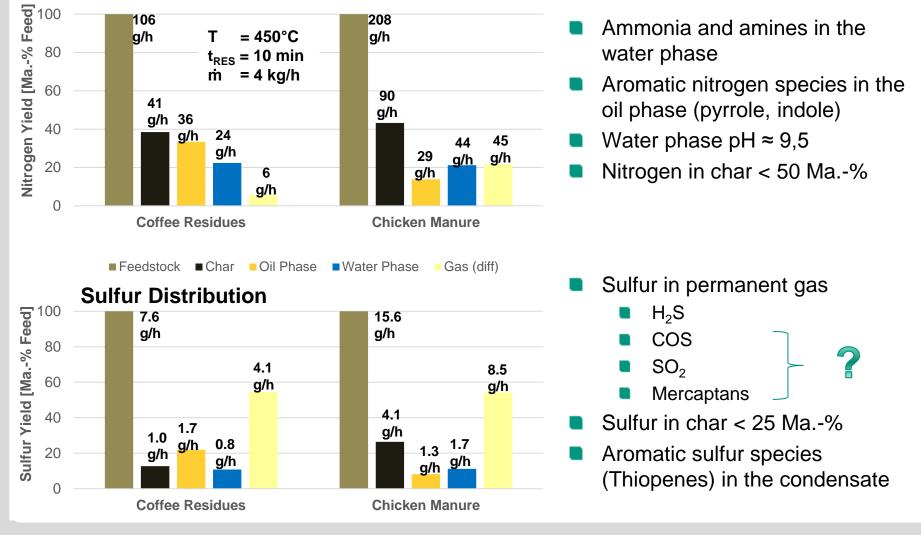
28,0

21,2

24,9

26,0

		Pyrolysis	Oil		Pyrolysis Char				
Material	Average Formula	LHV [MJ/kg]	Water [Ma%]	pH Value	Average Formula	LHV [MJ/kg]	Ash [Ma%]	Sulfur [mg/kg]	Chlorine [mg/kg]
Coffee Residues	$C_6H_{8.2}N_{0.3}O_{0.4}$	27.9	9.8	9.5	$C_6H_{4.1}N_{0.2}O_{0.3}$	24.8	22.6	700	1400
Wheat Straw	$C_6H_{8.4}N_{0.1}O_{0.5}$	22.1	17.5	2.5	$C_6H_{3.5}N_{0.1}O_{0.6}$	24.1	21.3	1600	4100
Chicken Manure	$C_6H_9N_{0.6}O$	25.0	10.0	9.8	$C_6H_{3.7}N_{0.7}O_{0.4}$	14.0	49.8	2300	5800
Sewage Sludge	$C_6H_{11.4}N_{0.7}O_{1.4}$	26.9	22.6	9.6	$C_6H_{7.1}N_{0.7}O_1$	11.2	59.0	8500	253

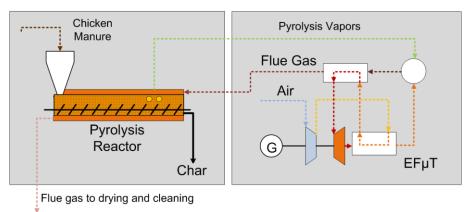

10 03.12.2015

MSc. Marco Tomasi Morgano - Upgrading of low-grade biogenic feedstock by innovative screw pyrolysis Biorefineries, 23 to 25 November, Concepción-Chile

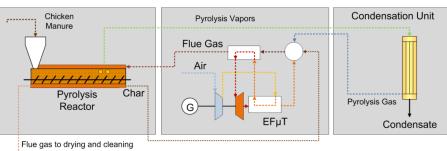
Low-grade biomass conversion Nitrogen / Sulfur distribution

Nitrogen Distribution

 11
 03.12.2015
 MSc. Marco Tomasi Morgano – Upgrading of low-grade biogenic feedstock by innovative screw pyrolysis


 Biorefineries, 23 to 25 November, Concepción-Chile

Potential of low-grade biomass Decentral CHP and valuable products



- Decentral pyrolysis plant Capacity < 5 MW_{TH}
- Self-sustainability
 - No external heat / power
 - Internal use of pyrolysis products
 - Waste heat for drying process
- Fuel / Load flexibility
 - Seasonal / Blended feedstocks
 - Polygeneration
- Alternative: in-situ at the Biorefinery
 - Heat / power from the plant
 - Condensation
 - Direct post-processing of vapors

Option 1: Vapors Combustion

Option 2: Gas & Condensation

Potential of low-grade biomass Decentral CHP and char

- Remediated solid
- High phosphorus content
- High potassium content
- Building-block for fertilizers
- Suitable for very acid soils

Biorefineries, 23 to 25 November, Concepción-Chile

Feed

Char 450°C

Karlsruhe Institute of Technology

Plant Nutrients	Char 450°C	Availability [%]
рН	13	-
Potassium	58019 mg/kg	50,7
Phosphorus	29248 mg/kg	18,0

	Unit	Feed	Char
С	[%]	40,4	42,1
Н	"	5,0	2,3
N S	"	5,79	4,71
S	"	0,435	0,830
CI	[mg/kg]	3420	3365
Ash (550°C)	[%]	24,20	47,87
Na₂o	[%-Ash]	1,50	1,49
MgO	"	5,0	5,2
Al ₂ O ₃	II	1,5	1,4
SiO₂	"	6,6	6,9
P ₂ O ₅	"	13,3	14,0
SO₃	"	3,7	2,6
CI	"	-	1,19
K₂O	"	12,0	14,6
CaO	"	36,6	35,9
MnO	"	0,28	0,27
Fe ₂ 0 ₃	"	-	0,90
ZnO	"	-	0,17

Potential of low-grade biomass Distillation of chicken manure condensate

Acetamide

37.73

Distillate

Stabilizer

40.00

Stabilizer

40.00

Furfuryl Alcohol

30,00

Furfuryl Alcohol

Fresh Water Phase Distillation of the water phase $T = 130^{\circ}C$ Ammonia Distillate = 75 Ma.-% Acetic Acid **Propionic Acid** Concentration of the nitrogen species **Butanic Acid** in the distillate Pyrrole Acids in the retentate 24.43 10.00 20.00 Ammonia Methyl-Pyrazine Acetonitrile ⁻yrazine Pyridine Pyrrole 5.53 Fresh Distillate 24,42 Water Phase 20.00 10.00 30.00

14 03.12.2015 MSc. Marco Tomasi Morgano - Upgrading of low-grade biogenic feedstock by innovative screw pyrolysis Biorefineries, 23 to 25 November, Concepción-Chile

Conclusion

- Low-grade biogenic feedstocks are difficult resources
- Pyrolysis is a suitable upgrading process
- STYX couples the advantages of screw reactors and hot gas filtration
- Background studies on pyrolysis at bench scale
- Production in technical relevant scale for reliable products characterizations
- Potential to reduce the costs of separated drying process
- Condensate products suitable for further upgrading in biorefineries
- Solid products suitable for co-firing / fertilizer building-block / activated carbon

Thank You for the kind attention

Contact: Marco Tomasi Morgano

Phone: +49 721 608 22869 Email: marco.tomasimorgano@kit.edu

Karlsruhe Institute of Technology (KIT) Institute for Technical Chemistry Dept. Pretreatment and Gas Cleaning

Hermann-von-Helmholtz-Platz-1 76344 Eggenstein-Leopoldshafen (D)