

www.eurobioref.org EuroBioRef: Designing next generation biorefineries

3rd Iberoamerican Congress on Biorefineries (CIAB)

Concepción, Chile, November 23-25 2015 Coordinator: Prof. Franck Dumeignil (UCCS) Speaker: Prof. Franck Dumeignil (UCCS)

A European Project supported within the Seventh Framework Programme for Research and Technological Development

7th FP Call

Call of the 7th Framework Programme : COLLABORATIVE PROGRAMME

Joint Programme FP7-2009-BIOREFINERY-CP

- Nanosciences, Nanotechnologies, Materials and new Production Technologies
- Energy
- Food, Agriculture and Fisheries, and Biotechnology
- Environment (including Climate Change)

Establishment of a Network of Projects

EuroBioRef

1st March 2010 – 28th February 2014

Duration: 4 years

A Large-Scale Project...

- 29 Partners
- 15 Nations

- *ca.* 3,400 Person Months
- 38 M€ of Global Budget, 23 M€ of EC grant

- 10 Sub-Projects, 35 Work Packages, 153 Tasks
- 59 Milestones
- 214 EC Deliverables

...Involving a Wide Consortium

6

Next Generation Biorefinery: Principle

EUROpean Multilevel Integrated BIOREFinery Design for Sustainable Biomass Processing

EuroBioRef will bridge the gap between agriculture and chemical industry by integrating the whole biomass chain in a Multi-feedstock (non-edible), Multi-process (chemical, biochemical, thermochemical), Multi-products (aviation fuels and chemicals) commercially viable and adaptable approach for a sustainable bio-economy in Europe.

Next Generation Biorefinery: Objectives

Biodiversity

Produce and use a high diversity of sustainable biomasses adapted for European regions

High Energy Aviation Fuel

High specific energy bio-jetfuel (42 MJ/kg)

Produce Multiple Products (reaching TRL > 5)

(Chemicals, polymers, materials) in a flexible and optimised way...

Improve cost efficiency by 30%

through improved reaction conditions and separation effectiveness, improved plant and feedstock flexibility, reduction in production time and logistics

Reduce energy consumption by 30%

Product zero wastes

and rationalize the use of raw materials

Reduce time to Market (month)

8

Next Generation Biorefinery: Concept

Target Products

Project structure

SP10: Exploitation, dissemination, communication, standardisation, training

Configuration of the project

Work by technical/scientific field

Integration (Value Chains) See booklet

SP10: Exploitation, dissemination, communication, standardisation, training

A chemicals-driven biorefinery

EuroBioRef biorefineries are chemicals/materials-driven:

- Best part of the crops: High value chemicals and products
- Residues: Production of energy

This is a rethinking of commonly admitted biorefineries concepts that are strongly biofuels-driven.

SP1

6 Value Chains

6 value chains corresponding to 6 different scenarios of biorefineries integrating results and concepts developed in EuroBioRef have been designed and multidimensionaly assessed, to realize demonstrations of the developed technologies, but also to assess scenarios of industrial exploitation.

Value Chain 1: Castor oil to polymers

Value Chain 2: Crambe/safflower oils to polymers

Value Chain 3: Alcohols to fuels (ATF)

Value Chain 4: Lignocellulosics to acrylates

Value Chain 5: Syngas-based products

Value Chain 6: Integrated productions in existing assets

Expected turnover

Probability of Success (Medium <--> High)

SP10: Exploitation, dissemination, communication, standardisation, training

La radius de la construcción de

Lignocellulosics

Fields trials in Greece, Poland & Madagascar

Oleaginous plants

Mapping of potential cultures location in Europe

Miscanthus

Switchgrass

SP2

P7: Process design & Demos

Willow

Logistics

Development of a comprehensive tool for optimizing biomass logistics

SP10: Exploitation, dissemination, communication, standardisation, training

Lignocellulosics fractionation: BALITM process (1)

Lignocellulosics fractionation: BALITM process (2)

SP3

7: Process design & SP8: Indust Demos

Oil extraction/refining

Enzymatic hydrolysis

New process for castor oil:

- Hydrolysis rate > 95%
- No by-product
- Distillation yield increased by 5%
- 70% reduction of water
- Full recycling of hydrolysis water
- Substantial reduction of energy consumption

/ANCE

Oleaginous plants Oil **Extraction** Cake Oil Splitting Fatty acids/ esters Glycerol

Crushing of jatropha and castor:

Fatty acids profiles very close to the commercial ones

Refining of lunaria, castor and crambe oils:

Distribution in fatty acids in the expected range for the corresponding commercial oils

Saponification of lunaria and crambe oils:

Distillation to isolate erucic acid

SP10: Exploitation, dissemination, communication, standardisation, training

rependiel and biogen production

SP4

7: Process Jesign & Demos

SP10: Exploitation, dissemination, communication, standardisation, training

Catalytic transformations

SP10: Exploitation, dissemination, communication, standardisation, training

Thermochemical treatment of biorefinery residues

Activated carbons production

30⁺ biomasses assessed

53 physically activated samples

110 chemically activated samples

Up to 1900 m².g⁻¹

SP6

CENTER FOR RESEARCH TECHNOLOGY HELLAS

SP10: Exploitation, dissemination, communication, standardisation, training

Conceptual process design and integration (+ demos)

- Individual processes in SP4-SP6 are designed (total 13)
- 6 value chains (each consisting of a series of processes) were evaluated

SP7

SP10: Exploitation, dissemination, communication, standardisation, training

Large test fields & primary refining

New large scale cultures established

Fractionation demo unit building and operation

Oil seeds processing

BIOTECHS & Chemistry

And a lot more products and derived products...

Aviation fuels (15 m³ designed and successfully tested!)

SP8

SP10: Exploitation, dissemination, communication, standardisation, training

Assessment of legal framework for EU biorefineries

**** * EUBIA * ****	Legislation	Standardisation, Labelling & Certification	Complementary actions
Biomass &	Renewable Energy	RED Sustainability	Biomass Action Plan
Renewable	Directive, RED (2008)	requirements	• EIBI, SET-Plan, FP7,
Energy		CEN draft sustainability standards for biomass	Lead Market Initiative
Feedstocks	 Common Agricultural Policy Waste Framework Directive (2008) 	 Forest Stewardship Council FLEGT 	Forest Action Plan
Conversion processes	 EU Industrial Emissions Directive (2010) The REACH Directive (2006) 		 Emission Trading System
End-products & markets	Fuel Quality Directive (2009)	 CEN product standards ISO product standards Eco-labelling 	Green Public Procurement Policy

LCA methodology: Harmonised indicators

Download LCA methodology for biorefineries: <u>http://www.eurobioref.org/index.php/dissemination</u>

LCA approach in EuroBioRef: Approach

- eurobioref

SP9

7: Process design &

SP10: Exploitation, dissemination, communication, standardisation, training

Remarkable documents & videos

urobioref

video

English version downloadable here:

http://eurobioref.org/ documents/ **EuroBioRef English.VOB**

downloadable here: http:// www.eurobioref.org/ index.php/eurobioref-

results

Video of results

Confidential 43

Education & training

Summer School "The concept of Biorefinery comes into operation"

IVITY and CATALYSIS CENTER FOR RESEARCH &

September 18th-24th, 2011

Lecce, Italy Participants: 80

+ Many other training actions...

Setting of a European master on biorefineries

European Master on Biorefineries

+ 10⁺ master courses...

Key dissemination figures

• 300⁺ communications in international congresses

• 33 patents

• 65⁺ scientific papers

Conclusion

EuroBioRef's Achievements vs Objectives

Biodiversity

Produce and use a high diversity of sustainable biomasses adapted for European regions

High Energy Aviation Fuel

High specific energy bio-jetfuel (42 MJ/kg)

Produce Multiple Products (reaching TRL > 5)

(Chemicals, polymers, materials) in a flexible and optimised way...

Improve cost efficiency by 30%

through improved reaction conditions and separation effectiveness, improved plant and feedstock flexibility, reduction in production time and logistics

Reduce energy consumption by 30%

Product zero wastes

and rationalize the use of raw materials

Reduce time to Market (month)

Common goal

EUROpean Multilevel Integrated BIOREFinery Design for Sustainable Biomass Processing

Puttied and User version of the second secon

DP-1: High Temp, O₂ blown Plant, Piteå, Sweden

Common Goal: Producing Aviation Fuels Blends as well as Chemicals

Acknowledgement

This project has received funding from the European Union's Seventh Programme for research, technological development and demonstration under grant agreement No 241718

