GRESSO INTERNACIONAL DE CELULOSE E PAPEL RÊNCIA IBEROAMERICANA SOBRE BIOECONOMIA

MICROFIBRILLATED CELLULOSE PROVEN TO CREATE VALUE IN FULL SCALE PAPERMAKING

Per Svending 1, Edenil Santos da Costa 2

¹ Imerys Minerals AB. Sweden

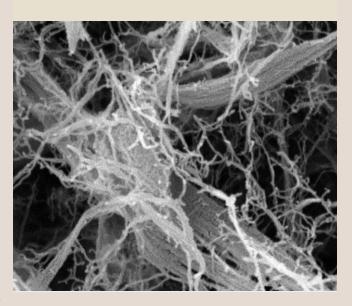
² Imerys do Brasil, Brazil

REALIZAÇÃO

CORREALIZAÇÃO

ABSTRACT

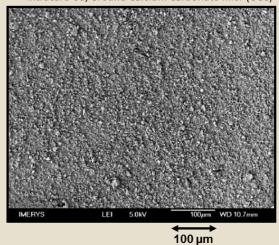
Imerys recently announced the commercial break-through in processing of pulp to microfibrillated cellulose (MFC) for use in paper industry applications. Imerys´MFC offers paper makers the opportunity to become more cost competitive or to develop new differentiated products. Application experience from full scale papermaking is presented with emphasis on how cost savings can be achieved when replacing market pulp with filler and MFC. Further there are examples of how MFC can help the paper maker improve quality of paper as well as paper coatings.


Keywords: MFC, microfibrillated cellulose, filler, opacity, porosity, coating.

History and current state of the art of "conventional" MFC.

- > First made in the 80's
 - Very high energy demand (25-30 MWh/ton)
 - Using expensive and sophisticated grinding equipment
 - Expensive and very high capex/capacity ratio
- Known to be ideal as a strength aid in paper.
- > Conventional state of the art MFC
 - Pulp pre-treatment to soften up the fibers
 - Significantly reduced energy demand
 - Still using expensive and sophisticated grinding equipment resulting in high capex/capacity ratio
 - Low solids product in gel form, often with high surface charge
 - Scale limitations preventing large volume applications

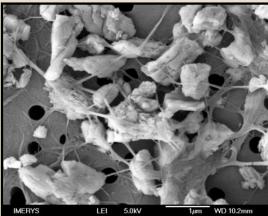
In practice "conventional" MFC is still restricted to high value applications.





FiberLean MFC is made from co-grinding pulp with filler

Intracarb 60, Ground Calcium Carbonate filler (GCC)



Northern Bleached Softwood Kraft pulp (NBSK)

FiberLean composite with GCC and MFC visible

Process input (2 above) and output (to the right). Note the difference in magnification.

1ª CONFERÊNCIA IBEROAMERICANA SOBRE BIOECONOMIA

Full scale trial experience with FiberLean

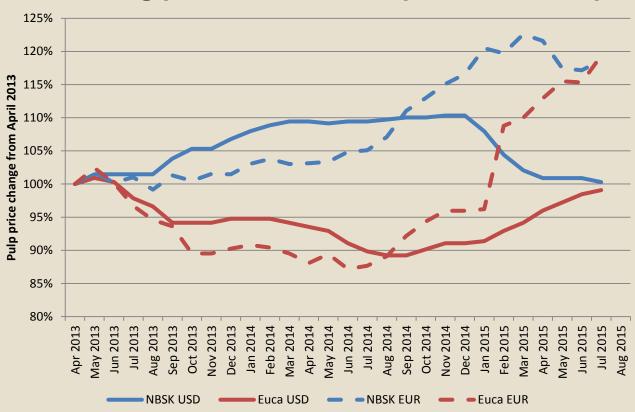
- Close to 50 full scale trials on 21 paper machines to date
 - In Europé, North America, South America and Asia.
- > Trials ranging from a few hours to several days.
- > Extensive experience across segments
 - 6 mills in UWF
 - 6 mills in speciality and mechanical paper
 - 8 mills in CWF
 - 2 mills in Packaging
- > 3 commercial contracts for on-site MFC plants.

FiberLean MFC base concept:

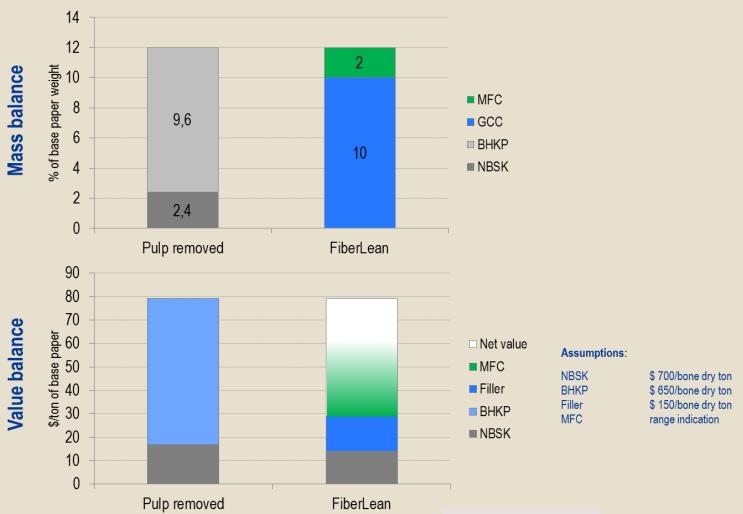
Facilitating increased filler content in papers.

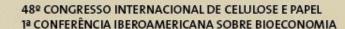
Relative USD pulp price trend from April 2013

July -15 list prices:


NBSK: \$850 Euca: \$805

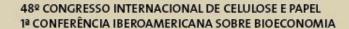
The gap between long and short fiber is back to what it was


Adding price trend in EUR paints another picture



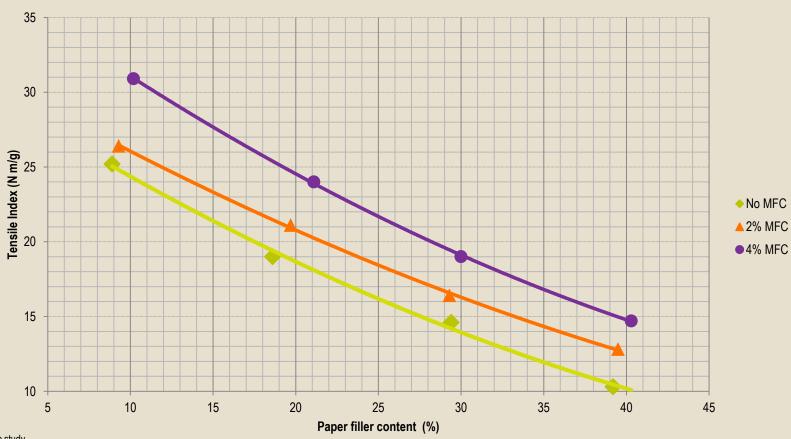
In EUR terms the price of pulp is now 15-20% higher!

Simplistic value calculation model for filler increase with MFC

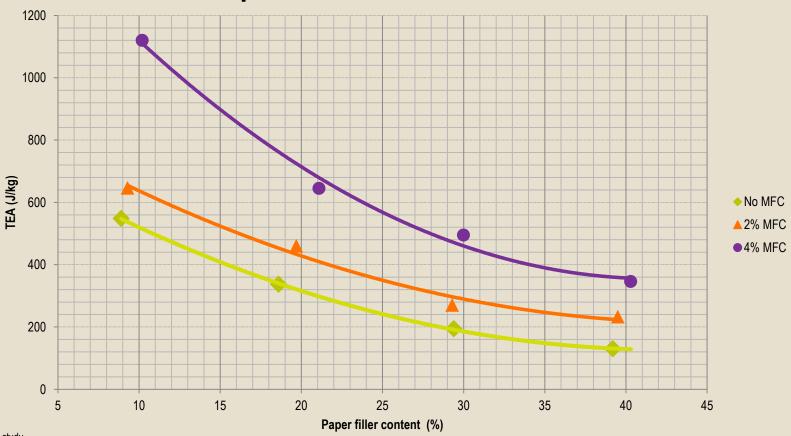


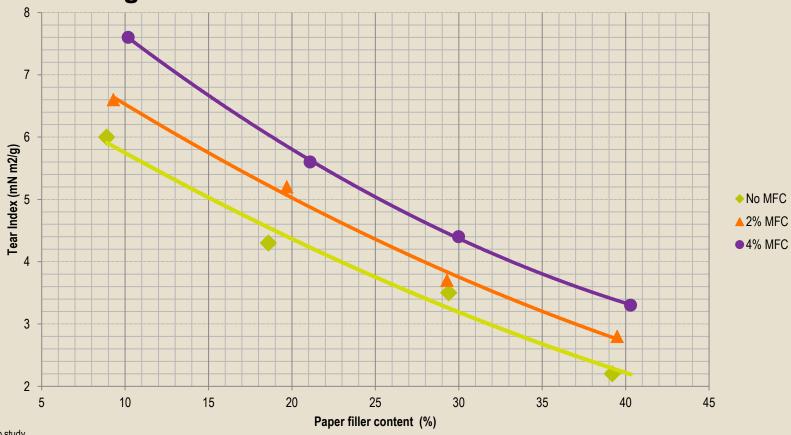
Numerics of value calculation model for filler increase with MFC

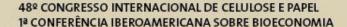
Ь	800 kg of BHKP at:	\$650 = \$520
<u> </u>	800 kg of BHKP at: 200 kg of NBSK at: 1000 kg of pulp mix:	\$700 = \$140
	1000 kg of pulp mix:	\$660

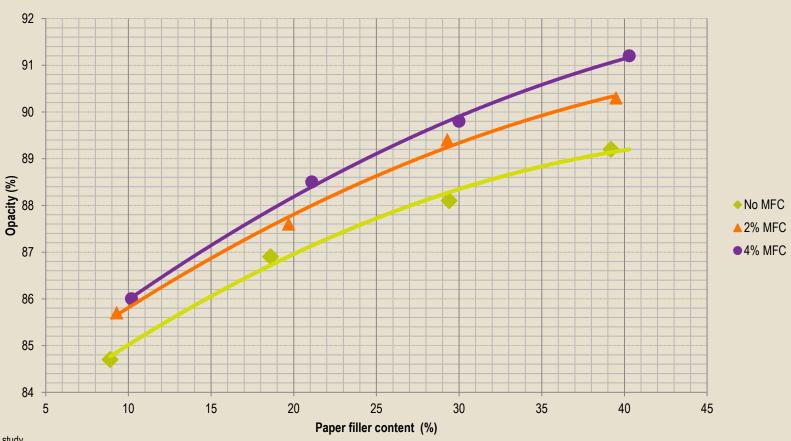

	167 kg of NBSK to convert to MFC at:	\$700 = \$117
	(167) kg of MFC conversion charge at:	\$2 500 = \$418
=	833 kg of filler at:	\$150 = \$125
	1000 kg of MFC/filler mix at 2/10 ratio:	\$659

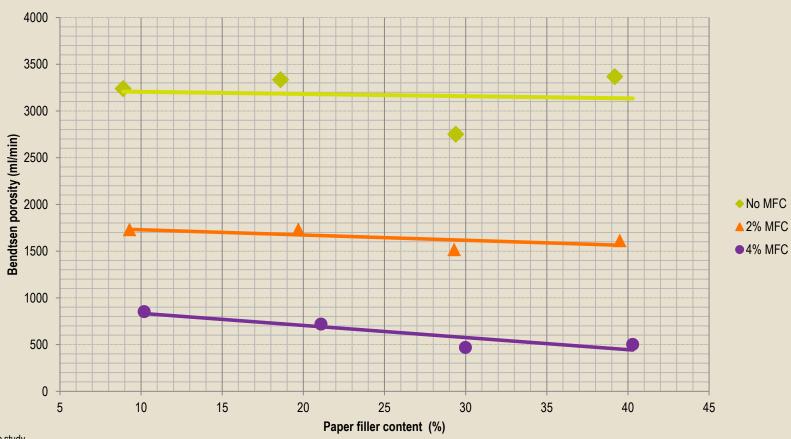
- In order to start creating value the price of MFC conversion needs to be below 2 500 \$/dry metric ton.
- Obviously it needs to be well below this to make filler increase worthwhile for the paper maker.

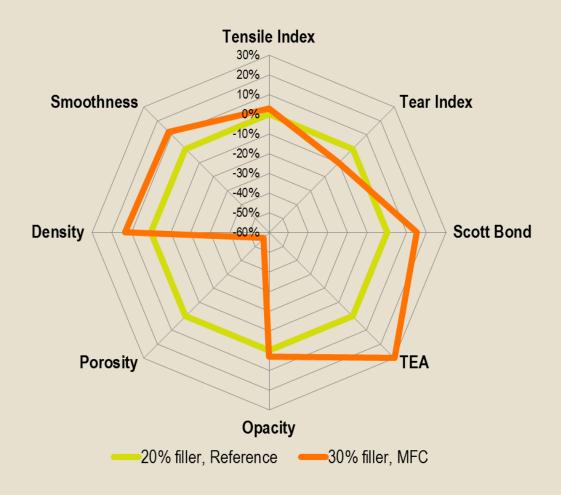

Tensile strength is improved by MFC addition


Tensile Energy Absorption increases more than tensile, i.e. stretch is improved.




Tear strength improves too, a result of better fiber network bonding.

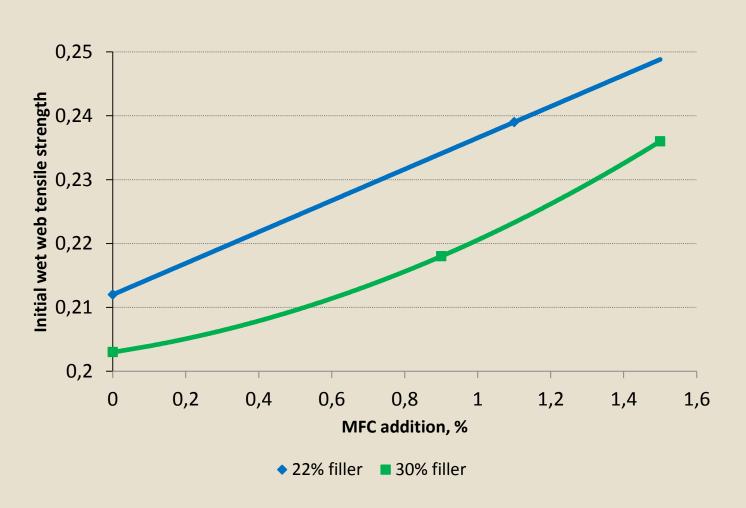

Opacity improves with higher filler loading, but also from MFC

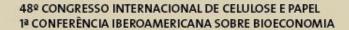


The impact of MFC on porosity is quite profound

48º CONGRESSO INTERNACIONAL DE CELULOSE E PAPEL 1ª CONFERÊNCIA IBEROAMERICANA SOBRE BIOECONOMIA

48º CONGRESSO INTERNACIONAL DE CELULOSE E PAPEL 1ª CONFERÊNCIA IBEROAMERICANA SOBRE BIOECONOMIA




Base paper	Reference	FiberLean	Comments	
Ash	16%	29%	+13% filler	
Gurley porosity	26	58	Much tighter sheet	
Scott Bond	550	605	+10%	
IGT	490	490	=	
Final paper	Reference	FiberLean	Comments	
Bulk	0,76	0,75	1% bulk loss	
Stiffness	218	194	-11% stiffness	
Gloss	70	70	=	
Scott Bond	604	634	+5%	
IGT	164	165	=	
Calendering pressure*	200	170	With 20 parts less kaolin in the coating colour.	

^{*} Also going from 9 nips to 6 nips.

MFC has a strong positive impact on initial wet web strength

MFC is a good fit for increased filler loading

Impact on:	Increased filler	Increased filler with MFC	Comments:	
Cost savings:	+++	+	Cost of MFC	
Opacity:	++	+++	Even higher with MFC	
Brightness:	++	+		
Smoothness:	+	++	Better with MFC	
Drainage:	++	+	MFC holds back some of the benefit	
Strengths:		+/-	Wet-strength – runnability, dry strength – quality	
Porosity:	-	+++	Much lower porosity with MFC	
Bulk:	-		MFC doesn't help. Needs paper making trade off's	

Key differerentiators compared to chemistry based concepts

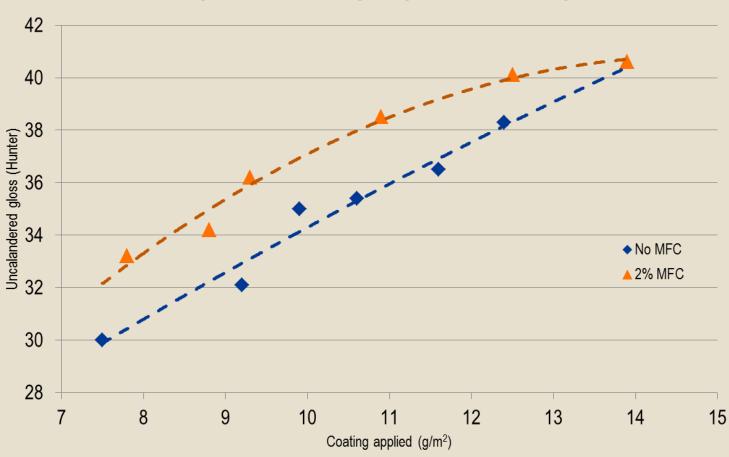
Impact on:	Increased filler	Increased filler with MFC	Comments:	
Cost savings:	+++	+	Cost of MFC	
Opacity:	++	+++	Even higher with MFC	
Brightness:	++	+		
Smoothness:	+	++	Better with MFC	
Drainage:	++	+	MFC holds back some of the benefit	
Strengths:		+/-	Wet-strength – runnability, dry strength – quality	
Porosity:	-	+++	Much lower porosity with MFC	
Bulk:	-		MFC doesn't help. Needs paper making trade off's	

48º CONGRESSO INTERNACIONAL DE CELULOSE E PAPEL 1ª CONFERÊNCIA IBEROAMERICANA SOBRE BIOECONOMIA

FiberLean MFC coating improvements:

Improved coating performance through better base paper hold-out.

1ª CONFERÊNCIA IBEROAMERICANA SOBRE BIOECONOMIA


Opportunities from porosity reduction in base paper

- Reduced coat weight
- Improved gloss and smoothness
- Reduced calendering to win bulk (to compensate for filler increase)
- Use of cheaper coating pigments
- Reduced binder demand
- Better coater runnability

Less coating needed to get good coverage

Thermal printing paper, 45 g/m2 Constant addition of 10% GCC filler Bendtsen porosity from 300 to 200 ml

FiberLean MFC for product development:

Improved paper quality through use of MFC.

Adding MFC to a 250 CSF base at constant filler content (20%) to improve paper properties

	Tensile Energy Absorption	Tear Index	Scott Bond	Bendtsen Porosity	Opacity
	J/kg	mN m²/g	J/m ²	ml/min	%
Reference	792	5,7	209	258	87,8
1% MFC	924	5,7	288	180	88,2
2% MFC	859	5,8	291	114	88,3
4% MFC	1224	6,5	377	104	88,8

Adding MFC to a 550 CSF base at constant filler content (20%) to improve paper properties

	Tensile Index	Tensile Energy Absorption	Tear Index	Scott Bond	Bendtsen Porosity	Opacity
	N m/g	J/kg	$mN m^2/g$	J/m ²	ml/min	%
Reference	14,8	200	4,1	40	2500	89,0
3% MFC	22,0	500	5,3	70	1300	89,5

Conclusions:

- ✓ Use of MFC for P&W paper cost reduction or quality improvement is now established in the market.
- ✓ Cost of MFC conversion needs to be (well) under€ 2 500 per dry ton.
- ✓ This is possible using an on-site MFC process with economy of scale.

48º CONGRESSO INTERNACIONAL DE CELULOSE E PAPEL 1º CONFERÊNCIA IBEROAMERICANA SOBRE BIOECONOMIA

Edenil Santos da Costa: +5511993901649 edenil.costa@imerys.com

Per Svending: +46705893918 per.svending@imerys.com

EALIZAÇÃO

Micro Fibrillated Cellulose

A new dimension in paper making