三

Absent or overlooked?
 Approaches to overcome the problem of non-detection in forest inventories

Ausente ou negligenciado?

Procedimentos para superar a não detecção nos inventários florestais

Tim Ritter

Institute of Forest Growth
Department of Forest and Soil Science University of Natural Resources and Life Sciences, Vienna

24 September 2015

Table of contents

(1) Introduction

2 Application of point transect sampling in forest inventories

3 Correcting the non-detection bias of angle count sampling (ACS)

4 Correcting the non-detection bias of terrestrial laser scanning (TLS) in a single-scan-mode
(5) Conclusions

Non-detection

- The emphasis of traditional forest inventories is on timber production
- However, with increasing interest, society looks the forests as future carbon sinks, potential biomass energy resources, wildlife habitat, water resources, and for other ecosystem services, so that the demand for assessing these aspects has increased (Ducey, 2014; Kenning et al., 2005)
- Traditional sampling techniques for forest inventories use a census within a limited search area for inference
- When sampling rare objects, these sampling techniques may proof to be inefficient and cost intensive due to their limited search area
- Total detectability of objects is assumed, any violation of this assumption leads to a non-detection bias
- The problem of non-detection becomes especially pronounced when sampling
- rare objects (e.g. rare and valuable tree species, or rare and ecologically important objects like snags)
- in highly structured forests
- with limited sighting conditions

Non-detection

- The emphasis of traditional forest inventories is on timber production
- However, with increasing interest, society looks the forests as future carbon sinks, potential biomass energy resources, wildlife habitat, water resources, and for other ecosystem services, so that the demand for assessing these aspects has increased (Ducey, 2014; Kenning et al., 2005)
- Traditional sampling techniques for forest inventories use a census within a limited search area for inference
- When sampling rare objects, these sampling techniques may proof to be inefficient and cost intensive due to their limited search area
- Total detectability of objects is assumed, any violation of this assumption leads to a non-detection bias
- The problem of non-detection becomes especially pronounced when sampling
- rare objects (e.g. rare and valuable tree species, or rare and ecologically important objects like snags)
- in highly structured forests
- with limited sighting conditions

Non-detection

- The emphasis of traditional forest inventories is on timber production
- However, with increasing interest, society looks the forests as future carbon sinks, potential biomass energy resources, wildlife habitat, water resources, and for other ecosystem services, so that the demand for assessing these aspects has increased (Ducey, 2014; Kenning et al., 2005)
- Traditional sampling techniques for forest inventories use a census within a limited search area for inference
- When sampling rare objects, these sampling techniques may proof to be inefficient and cost intensive due to their limited search area
- Total detectability of objects is assumed, any violation of this assumption leads to a non-detection bias
- The problem of non-detection becomes especially pronounced when sampling
- rare objects (e.g. rare and valuable tree species, or rare and ecologically important objects like snags)
- in highly structured forests
- with limited sighting conditions

Non-detection

- The emphasis of traditional forest inventories is on timber production
- However, with increasing interest, society looks the forests as future carbon sinks, potential biomass energy resources, wildlife habitat, water resources, and for other ecosystem services, so that the demand for assessing these aspects has increased (Ducey, 2014; Kenning et al., 2005)
- Traditional sampling techniques for forest inventories use a census within a limited search area for inference
- When sampling rare objects, these sampling techniques may proof to be inefficient and cost intensive due to their limited search area
- Total detectability of objects is assumed, any violation of this assumption leads to a non-detection bias
- The problem of non-detection becomes especially pronounced when sampling
- rare objects (e.g. rare and valuable tree species, or rare and ecologically important objects like snags)
- in highly structured forests
- with limited sighting conditions

Non-detection

- The emphasis of traditional forest inventories is on timber production
- However, with increasing interest, society looks the forests as future carbon sinks, potential biomass energy resources, wildlife habitat, water resources, and for other ecosystem services, so that the demand for assessing these aspects has increased (Ducey, 2014; Kenning et al., 2005)
- Traditional sampling techniques for forest inventories use a census within a limited search area for inference
- When sampling rare objects, these sampling techniques may proof to be inefficient and cost intensive due to their limited search area
- Total detectability of objects is assumed, any violation of this assumption leads to a non-detection bias
- The problem of non-detection becomes especially pronounced when sampling
- rare objects (e.g. rare and valuable tree species, or rare and ecologically important objects like snags)
- in highly structured forests
- with limited sighting conditions

Non-detection

- The emphasis of traditional forest inventories is on timber production
- However, with increasing interest, society looks the forests as future carbon sinks, potential biomass energy resources, wildlife habitat, water resources, and for other ecosystem services, so that the demand for assessing these aspects has increased (Ducey, 2014; Kenning et al., 2005)
- Traditional sampling techniques for forest inventories use a census within a limited search area for inference
- When sampling rare objects, these sampling techniques may proof to be inefficient and cost intensive due to their limited search area
- Total detectability of objects is assumed, any violation of this assumption leads to a non-detection bias
- The problem of non-detection becomes especially pronounced when sampling
- rare objects (e.g. rare and valuable tree species, or rare and ecologically important objects like snags)
- in highly structured forests
- with limited sighting conditions

Non-detection

- The emphasis of traditional forest inventories is on timber production
- However, with increasing interest, society looks the forests as future carbon sinks, potential biomass energy resources, wildlife habitat, water resources, and for other ecosystem services, so that the demand for assessing these aspects has increased (Ducey, 2014; Kenning et al., 2005)
- Traditional sampling techniques for forest inventories use a census within a limited search area for inference
- When sampling rare objects, these sampling techniques may proof to be inefficient and cost intensive due to their limited search area
- Total detectability of objects is assumed, any violation of this assumption leads to a non-detection bias
- The problem of non-detection becomes especially pronounced when sampling
- rare objects (e.g. rare and valuable tree species, or rare and ecologically important objects like snags)
- in highly structured forests
- with limited sighting conditions

Distance sampling - an alternative method to overcome 气 the problem of non-detection

- Widely used for estimating the abundance of all kinds of biological populations, especially birds and mammals Thomas et al. (2012)
- Based on the work of Anderson \& Pospahala (1970); further developed over the years; standard text books by Buckland et al. $(2001,2004)$
- Two main methods
- Line transect sampling (LTS)
- Point transect sampling (PTS)
- Information used for inference is not a census within a limited search area (e.g. within a circular sample plot), but the recorded distances to detected objects of interest obtained by surveying lines or points respectively (Marques et al., 2011)
- The most common software to analyse distance sampling data is the Windows-based computer package DISTANCE (Thomas et al., 2010), it is freely available online: http://distancesampling.org/

Distance sampling - an alternative method to overcome £ the problem of non-detection

- Widely used for estimating the abundance of all kinds of biological populations, especially birds and mammals Thomas et al. (2012)
- Based on the work of Anderson \& Pospahala (1970); further developed over the years; standard text books by Buckland et al. $(2001,2004)$
- Two main methods
- Line transect sampling (LTS)
- Point transect sampling (PTS)
- Information used for inference is not a census within a limited search area (e.g. within a circular sample plot), but the recorded distances to detected objects of interest obtained by surveying lines or points respectively (Marques et al., 2011)
- The most common software to analyse distance sampling data is the Windows-based computer package DISTANCE (Thomas et al., 2010), it is freely available online: http://distancesampling.org/

Distance sampling - an alternative method to overcome غ the problem of non-detection

- Widely used for estimating the abundance of all kinds of biological populations, especially birds and mammals Thomas et al. (2012)
- Based on the work of Anderson \& Pospahala (1970); further developed over the years; standard text books by Buckland et al. $(2001,2004)$
- Two main methods
- Line transect sampling (LTS)
- Point transect sampling (PTS)
- Information used for inference is not a census within a limited search area (e.g. within a circular sample plot), but the recorded distances to detected objects of interest obtained by surveying lines or points respectively (Marques et al., 2011)
- The most common software to analyse distance sampling data is the Windows-based computer package DISTANCE (Thomas et al., 2010), it is freely available online:

Distance sampling - an alternative method to overcome 气 the problem of non-detection

- Widely used for estimating the abundance of all kinds of biological populations, especially birds and mammals Thomas et al. (2012)
- Based on the work of Anderson \& Pospahala (1970); further developed over the years; standard text books by Buckland et al. $(2001,2004)$
- Two main methods
- Line transect sampling (LTS)
- Point transect sampling (PTS)
- Information used for inference is not a census within a limited search area (e.g. within a circular sample plot), but the recorded distances to detected objects of interest obtained by surveying lines or points respectively (Marques et al., 2011)
- The most common software to analyse distance sampling data is the Windows-based computer package DISTANCE (Thomas et al., 2010), it is freely available online:

Distance sampling - an alternative method to overcome £ the problem of non-detection

- Widely used for estimating the abundance of all kinds of biological populations, especially birds and mammals Thomas et al. (2012)
- Based on the work of Anderson \& Pospahala (1970); further developed over the years; standard text books by Buckland et al. $(2001,2004)$
- Two main methods
- Line transect sampling (LTS)
- Point transect sampling (PTS)
- Information used for inference is not a census within a limited search area (e.g. within a circular sample plot), but the recorded distances to detected objects of interest obtained by surveying lines or points respectively (Marques et al., 2011)
- The most common software to analyse distance sampling data is the Windows-based computer package DISTANCE (Thomas et al., 2010), it is freely available online:

Distance sampling - an alternative method to overcome £ the problem of non-detection

- Widely used for estimating the abundance of all kinds of biological populations, especially birds and mammals Thomas et al. (2012)
- Based on the work of Anderson \& Pospahala (1970); further developed over the years; standard text books by Buckland et al. $(2001,2004)$
- Two main methods
- Line transect sampling (LTS)
- Point transect sampling (PTS)
- Information used for inference is not a census within a limited search area (e.g. within a circular sample plot), but the recorded distances to detected objects of interest obtained by surveying lines or points respectively (Marques et al., 2011)
- The most common software to analyse distance sampling data is the Windows-based computer package DISTANCE (Thomas et al., 2010), it is freely available online: http://distancesampling.org/

Distance sampling applications in forestry...

...are -still- quite rare:

Point transect sampling (PTS)

- Deadwood volume and carbon storage (Ritter \& Saborowski, 2010, 2012, 2014)
- Bias correction of angle count sampling (Ritter et al., 2013)
- Bias correction of terrestrial laser scanning (Ducey \& Astrup, 2013; Astrup et al., 2014)

Line transect sampling (LTS)

- Habitat trees (Bäuerle et al., 2009; Didas, 2009; Bäuerle \& Nothdurft, 2011)
- Low abundance tropical tree species (Kissa \& Sheil, 2012)
- Logging damage Siebert \& Ritter (in preparation)

Introduction
(2) Application of point transect sampling in forest inventoriesCorrecting the non-detection bias of angle count sampling (ACS) Correcting the non-detection bias of terrestrial laser scanning (TLS) in a single-scan-modeConclusions
Originally published as:
Ritter, T.; Saborowski, J. (2012): Point transect sampling of deadwood: a comparison with well-established sampling techniques for the estimation of volume and carbon storage in managed forests. In: European Journal of Forest Research 131(6): 1845-1856, doi:
10.1007/s10342-012-0637-2

Ritter, T.; SABOROWSKI, J. (2014): Efficient integration of a deadwood inventory into an existing forest inventory carried out as 2-phase sampling for stratification. In: Forestry 87(4): 571-581, doi: 10.1093/forestry/cpu016

Lower Saxony state forest district inventory (BI)

Two-phase sampling for stratification (2-SS) in a cycle of 10 years (Böckmann et al., 1998).

Phase I:

- Systematic sampling grid ($100 \mathrm{~m} \times 100 \mathrm{~m}$)
- Interpretation of CIR arial images

Phase II:

- Random selection of sample points within each stratum
- Two concentric circular sample plots (6 m and 13 m radius)

Dominating	Age class			
species group	$0-40$	$>40-80$	$>80-120$	>120
Decidous	dec1	dec2	dec3	dec4
Coniferous	con1	con2	con3	con4

Lower Saxony state forest district inventory (BI)

Two-phase sampling for stratification (2-SS) in a cycle of 10 years (Böckmann et al., 1998).

Phase I:

- Systematic sampling grid ($100 \mathrm{~m} \times 100 \mathrm{~m}$)
- Interpretation of CIR arial images
- Allocation to one of eight strata:

Dominating	Age class			
species group	$0-40$	$>40-80$	$>80-120$	>120
Decidous	dec1	dec2	dec3	dec4
Coniferous	con1	con2	con3	con4

Lower Saxony state forest district inventory (BI)

Two-phase sampling for stratification (2-SS) in a cycle of 10 years (Böckmann et al., 1998).

Phase I:

- Systematic sampling grid ($100 \mathrm{~m} \times 100 \mathrm{~m}$)
- Interpretation of CIR arial images
- Allocation to one of eight strata:

Dominating species group	$0-40$	$>40-80$	$>80-120$	>120
Decidous	dec1	dec2	dec3	dec4
Coniferous	con1	con2	con3	con4

Phase II:

- Random selection of sample points within each stratum
- Two concentric circular sample plots (6 m and 13 m radius)

Area under investigation

2416 ha, located in the heart of Germany:

State forest district
Reinhausen

- Sub district Reinhausen
- Sub district Sattenhausen
Subsample of the BI
- First inventory in summer (235 plots)
- Repeated inventory in winter (228 plots)

Pilot study

Sampling techniques

Downed coarse woody debris
$\left(d_{\max } \geq 7 \mathrm{~cm}\right)$

- Fixed area sampling (FAS) on 13 m radius plots
- Line Intersect Sampling (LIS)
- Point Transect Sampling (PTS)

Standing deadwood
(DBH $\geq 7 \mathrm{~cm}$)

- Fixed area sampling (FAS) on 13 m radius plots
- Angle count sampling (ACS)
- Point Transect Sampling (PTS)

Measurements

- Tree species (if possible)
- Decay class (using the key of Müller-Using \& Bartsch, 2009)
- DBH
- Height

Pilot study

Sampling techniques

Downed coarse woody debris
$\left(d_{\text {max }} \geq 7 \mathrm{~cm}\right)$

- Fixed area sampling (FAS) on 13 m radius plots
- Line Intersect Sampling (LIS)
- Point Transect Sampling (PTS)

Standing deadwood
(DBH $\geq 7 \mathrm{~cm}$)

- Fixed area sampling (FAS) on 13 m radius plots
- Angle count sampling (ACS)
- Point Transect Sampling (PTS)

Measurements

- Tree species (if possible)
- Decay class (using the key of Müller-Using \& Bartsch, 2009)
- DBH
- Height

Point Transect Sampling

Detection function

Point Transect Sampling

Detection function

Point Transect Sampling

Detection function

Detection probability

$$
\begin{align*}
\hat{P}_{a_{h}} & =\frac{\int_{0}^{\omega} g(r) 2 \pi r d r}{\pi \omega^{2}} \\
& =\frac{2}{\omega^{2}} \int_{0}^{\omega} r \cdot \hat{g}(r) d r \tag{1}
\end{align*}
$$

Point Transect Sampling

Detection function

Detection probability

$$
\begin{align*}
\hat{P}_{a_{h}} & =\frac{\int_{0}^{\omega} g(r) 2 \pi r d r}{\pi \omega^{2}} \\
& =\frac{2}{\omega^{2}} \int_{0}^{\omega} r \cdot \hat{g}(r) d r \tag{1}
\end{align*}
$$

Object density

$$
\begin{equation*}
\hat{D}_{h}=\frac{m_{h}}{n_{h} \pi \omega^{2} \hat{P}_{a_{h}}} \tag{2}
\end{equation*}
$$

Point Transect Sampling

Detection function

Detection probability

$$
\begin{align*}
\hat{P}_{a_{h}} & =\frac{\int_{0}^{\omega} g(r) 2 \pi r d r}{\pi \omega^{2}} \\
& =\frac{2}{\omega^{2}} \int_{0}^{\omega} r \cdot \hat{g}(r) d r \tag{1}
\end{align*}
$$

Object density

$$
\begin{equation*}
\hat{D}_{h}=\frac{m_{h}}{n_{h} \pi \omega^{2} \hat{P}_{a_{h}}} \tag{2}
\end{equation*}
$$

Volume

$$
\begin{equation*}
\hat{\bar{Y}}_{h}=\hat{D}_{h} \cdot \hat{E}(s) \tag{3}
\end{equation*}
$$

Detection probability within the different strata

Volume estimation

三

Sampling campaign	Sampling technique	\hat{Y} $\left[\mathrm{~m}^{3} \mathrm{ha}^{-1}\right]$	$\mathrm{SE}(\hat{Y})$ $\left[\mathrm{m}^{3} \mathrm{ha}^{-1}\right]$	\hat{T} $[\mathrm{~min}]$
Summer $(\mathrm{n}=235)$	FAS	2.54	0.56	421
	PTS	3.04	0.39	831
Winter $(\mathrm{n}=228)$	FAS	3.86	1.15	413
	PTS	3.05	0.42	923

Optimization

Sampling campaign	Sampling technique	n	SE (\hat{Y}) $\left[\mathrm{m}^{3} \mathrm{ha}^{-1}\right]$	\hat{T} $[\mathrm{~min}]$
Summer	FAS (All ph-2 plots)	600	$\mathbf{0 . 3 6 6}$	$\mathbf{1 0 6 2}$
	PTS (All ph-2 plots)	600	0.175	2148
	PTS (Optimal allocation)	79	0.365	301
Winter	FAS (All Ph-2 plots)	600	0.599	1085
	PTS (All Ph-2 plots)	600	0.193	2451
	PTS (Optimal allocation)	39	0.595	174

Optimization

三

Sampling campaign	Sampling technique	n	$\mathrm{SE}(\hat{Y})$ $\left[\mathrm{m}^{3} \mathrm{ha}^{-1}\right]$	\hat{T} $[\mathrm{~min}]$
Summer	FAS (All ph-2 plots)	600	$\mathbf{0 . 3 6 6}$	$\mathbf{1 0 6 2}$
	PTS (All ph-2 plots)	600	0.175	2148
	PTS (Optimal allocation)	$\mathbf{7 9}$	0.365	301
Winter	FAS (All Ph-2 plots)	600	0.599	1085
	PTS (All Ph-2 plots)	600	0.193	2451
	PTS (Optimal allocation)	39	0.595	174

Sampling campaign	Sampling technique	n	$\mathrm{SE}(\hat{Y})$ $\left[\mathrm{m}^{3} \mathrm{ha}^{-1}\right]$	\hat{T} $[\mathrm{~min}]$
Summer	FAS (All ph-2 plots)	600	$\mathbf{0 . 3 6 6}$	$\mathbf{1 0 6 2}$
	PTS (All ph-2 plots)	600	0.175	2148
	PTS (Optimal allocation)	79	0.365	301
Winter	FAS (All Ph-2 plots)	600	$\mathbf{0 . 5 9 9}$	$\mathbf{1 0 8 5}$
	PTS (All Ph-2 plots)	600	0.193	2451
	PTS (Optimal allocation)	39	0.595	174

三IntroductionApplication of point transect sampling in forest inventories

3 Correcting the non-detection bias of angle count sampling (ACS)Correcting the non-detection bias of terrestrial laser scanning (TLS) in a single-scan-modeConclusions

Originally published as:

Ritter, T.; Nothdurft, A.; Saborowski, J. (2013): Correcting the nondetection bias of angle count sampling. In: Canadian Journal of Forest Research 43(4): 344-354, doi: 10.1139/cjfr-2012-0408

Approach 1

Heuristic

- Expand each tree count by the tree's individual inverse estimated detection probability to correct for the negative bias introduced by overlooking trees.

Additional sampling effort

- The distance r_{j} from the plot center to each sighted tree, which is supposed to be counted by ACS, has to be measured.

Estimator

$$
\begin{equation*}
\hat{G}_{B C A C S 1}=k \cdot \sum_{j=1}^{z_{i}} \frac{1}{\hat{g}\left(r_{j}\right)} \tag{5}
\end{equation*}
$$

Approach 2

Heuristic

- Expand each tree count by the inverse estimated mean detection probability of all trees which have the same DBH d_{j} (and therefore also the same marginal inclusion circle K_{j}) and are supposed to be counted at any sample point.

Additional sampling effort

- The diameter of each counted tree has to be measured.
- Measuring all distances r_{j} is not necessary, as long as enough measurements are taken to estimate $g(r)$.
Mean detection probability within the marginal inclusion circle
- The radius of the marginal inclusion circle is $R_{j}=d_{j} /(2 \sqrt{k})$.
- The probability to detect a tree with DBH d_{j} from a random point within its marginal inclusion circle K_{j} can be estimated by $\hat{P}_{a_{j}}=\frac{2}{R_{j}^{2}} \int_{0}^{R_{j}} r g(r) d r$

Estimator

$$
\begin{equation*}
\hat{\bar{G}}_{B C A C S 2}=k \cdot \sum_{j=1}^{z} \frac{1}{\hat{P}_{a_{j}}}=\sum_{j=1}^{z} \frac{d_{j}^{2}}{4 R_{j}^{2} \hat{P}_{a_{j}}} \tag{6}
\end{equation*}
$$

Theoretical justification

The Horvitz-Thompson estimator of the total of Y over N trees, is given by

$$
\begin{equation*}
\hat{Y}(x)=\sum_{j=1}^{z} \frac{Y_{j}}{\pi_{j}} \text { with } \pi_{j}=\frac{\pi R_{j}^{2}}{A^{*}} \tag{7}
\end{equation*}
$$

$A^{*}=$ Inventory area extended by the peripheral zone (Mandallaz, 2008)

$$
R_{j}=d_{j} /(2 \sqrt{k})
$$

As trees may be overlooked, the inclusion probability π_{j} must be corrected:

$$
\begin{align*}
\boldsymbol{\pi}_{j}^{+} & =P\left(\left\{x \in K_{j}\right\} \cap\{\mathrm{j} \text { is detected }\}\right) \\
& =P\left(x \in K_{j}\right) P\left(\mathrm{j} \text { is detected } \mid x \in K_{j}\right)=\boldsymbol{\pi}_{j} P_{a_{j}} \tag{8}
\end{align*}
$$

This leads to the unbiased estimator

$$
\begin{equation*}
\hat{Y}(x)=\frac{1}{A^{*}} \sum_{j=1}^{z} \frac{Y_{j}}{\pi_{j}^{+}}=k \sum_{j=1}^{z} \frac{Y_{j}}{(\pi / 4) d_{j}^{2} P_{a_{j}}} \tag{9}
\end{equation*}
$$

of the Y total per area unit.

Application to basal area density estimates

BcACS2

- If the response variable Y is the basal area density \bar{G}, the corrected Horvitz-Thompson estimator can be simplified to

$$
\begin{equation*}
\hat{\bar{G}}(x)=k \sum_{j=1}^{z} \frac{1}{P_{a_{j}}} \tag{10}
\end{equation*}
$$

Replacing $P_{a_{j}}$ by $\hat{P}_{a_{j}}$ leads to the approx. unbiased estimator $\hat{\bar{G}}_{B C A C S 2}$

BcACS1

- Under the assumption of CSR, and if $x \in K_{j}$ for a tree with DBH d_{j}, it holds

$$
\begin{equation*}
E\left(g\left(r_{j}\right) \mid d_{j}\right)=\frac{1}{\pi R_{j}^{2}} \int_{0}^{R_{j}} g(r) 2 \pi r d r=P_{a_{j}} \tag{11}
\end{equation*}
$$

Thus, $\hat{\bar{G}}_{\text {BcACS1 }}$ can also approx. correct for the nondetection bias in ACS.

Performance of the estimators

Simulation study

- Poisson distributed trees
- Simple random sampling
- $k=1$ for all ACS-estimators
- "Density" represents the Gaussian kernel density estimation of the probability distribution function of $\hat{\bar{G}}$.Application of point transect sampling in forest inventories

Correcting the non-detection bias of angle count sampling (ACS)

4 Correcting the non-detection bias of terrestrial laser scanning (TLS) in a single-scan-modeConclusions

Originally published as:
Astrup, R.; Ducey, M.; Granhus, A.; Ritter, T.; von LÜPke, N. (2014): Approaches for estimating stand-level volume using terrestrial laser scanning in a single-scan mode. In: Canadian Journal of Forest Research 44(6): 666-676, doi: 10.1139/cjfr-2013-0535

Sample sites \& data acquisition

Sample sites

- 12 mature forest stands in southern Norway
- dominated by Norway spruce (Picea abies L.) and Scots pine (Pinus sylvestris L.)
- varying mixtures of broadleaved species (mainly birch (Betula pubescens Ehrh. and Betula pendula Roth.))
Data acquisition
- $20 \mathrm{~m} \times 20 \mathrm{~m}$ inventory grid
- FAS on $250 \mathrm{~m}^{2}$ sample plots
- FARO LS 880
- Tripod-mounted
- Full horizontal scan (360° horizontal and 320° vertical fields of view)
- Resolution of 0.009° (vertical) and 0.00076° (horizontal).
- Truncation points at 8.92 m and 15 m

Data analysis

- Stem extraction was done by a commercial TLS operator (Treemetrics Ltd.) using their proprietary software Autostem Forest
- A list of all detected trees, including their position and the diameter of the stem estimated for each 10 cm section was provided for all plots
- This data set can be treated as a FAS sample (uncorrected TLS)
- As the scanner-tree distances of all detected trees are known, the dataset can also be treated as a PTS sample (bias corrected TLS)

Comparison of stand-level volume estimates

Comparison of the FAS reference values with:

- Uncorrected TLS data (A \& B)
- Bias corrected TLS data (C \& D)

上

Introduction

Application of point transect sampling in forest inventories

Correcting the non-detection bias of angle count sampling (ACS)
4. Correcting the non-detection bias of terrestrial laser scanning (TLS) in a single-scan-mode
(5) Conclusions

Conclusions

- PTS (and distance sampling in general) is quit new to forestry, but is well established in other fields
- PTS is a very efficient and cost-saving sampling technique for rare objects
- PTS can easily be integrated into existing forest inventories
- PTS-theory can be annlied to existing inventory technioues (ACS \& TLS) to correct for non-detection

> In my opinion, PTS (and distance sampling in general) is worth to be tested in other forestry related applications maybe, you have some ideas, I would be very happy to establish an extensive cooperation!

Conclusions

- PTS (and distance sampling in general) is quit new to forestry, but is well established in other fields
- PTS is a very efficient and cost-saving sampling technique for rare objects
- PTS can easily be integrated into existing forest inventories
- PTS-theory can be applied to existing inventory techniques (ACS \& TLS) to correct for non-detection

> In my opinion, PTS (and distance sampling in general) is worth to be tested in other forestry related applications maybe, you have some ideas, I would be very happy to establish an extensive cooperation!

Conclusions

- PTS (and distance sampling in general) is quit new to forestry, but is well established in other fields
- PTS is a very efficient and cost-saving sampling technique for rare objects
- PTS can easily be integrated into existing forest inventories
- PTS-theory can be applied to existing inventory techniques (ACS \& TLS) to correct for non-detection

> In my opinion, PTS (and distance sampling in general) is worth to be tested in other forestry related applications maybe, you have some ideas, I would be very happy to establish an extensive cooperation!

Conclusions

- PTS (and distance sampling in general) is quit new to forestry, but is well established in other fields
- PTS is a very efficient and cost-saving sampling technique for rare objects
- PTS can easily be integrated into existing forest inventories
- PTS-theory can be applied to existing inventory techniques (ACS \& TLS) to correct for non-detection

> In my opinion, PTS (and distance sampling in general) is worth to be tested in other forestry related applications maybe, you have some ideas, I would be very happy to establish an extensive cooperation!

- PTS (and distance sampling in general) is quit new to forestry, but is well established in other fields
- PTS is a very efficient and cost-saving sampling technique for rare objects
- PTS can easily be integrated into existing forest inventories
- PTS-theory can be applied to existing inventory techniques (ACS \& TLS) to correct for non-detection

In my opinion, PTS (and distance sampling in general) is worth to be tested in other forestry related applications maybe, you have some ideas, I would be very happy to establish an extensive cooperation!

三

Obrigado pela sua atenção!

스

References

[Anderson \& Pospahala 1970] Anderson, D. ; Pospahala, R.: Correction of bias in belt transect sampling of immotile objects. In: Journal of Wildlife Management 34 (1970), S. 141-146
[Astrup et al. 2014] Astrup, R. ; Ducey, M. ; Granhus, A. ; Ritter, T. ; Lüpke, N. von: Approaches for estimating stand-level volume using terrestrial laser scanning in a single-scan mode. In: Canadian Journal of Forest Research 44 (2014), Nr. 6, S. 666-676
[Böckmann et al. 1998] Böckmann, T. ; Saborowski, J. ; Dahm, S. ; Nagel, J. ; Spellmann, H.: Die Weiterentwicklung der Betriebsinventur in Niedersachsen. In: Forst und Holz 53(8) (1998), S. 219-226
[Buckland et al. 2001] Buckland, S. ; Anderson, D. ; Burnham, K. ; Laake, J. ; Borchers, D. ; Thomas, L.: Introduction to distance sampling: Estimating abundance of biological populations. Oxford Univ. Press, 2001
[Buckland et al. 2004] Buckland, S. ; Anderson, D. ; Burnham, K. ; Laake, J. ; Borchers, D. ; Thomas, L.: Advanced Distance Sampling: Estimating abundance of biological populations. Oxford Univ. Press, 2004
[Bäuerle et al. 2009] Bäuerle, H. ; Nothdurft, A. ; Kändler, G. ; Bauhus, J.: Monitoring von Habitatbäumen und Totholz auf Basis von Stichproben. In: Allgemeine Forst- und Jagdzeitung 180 (2009), Nr. 11/12, S. 249-260
[Bäuerle \& Nothdurft 2011] Bäuerle, H. ; Nothdurft, A.: Spatial modeling of habita trees based on line transect sampling and point pattern reconstruction. In: Canadian Journal of Forest Research 41 (2011), Nr. 4, S. 715-727
[Burnham et al. 1987] Burnham, K. ; Anderson, D. ; White, G. ; Brownie, C. ; Pollock, K.: Design and analysis methods for fish survival experiments based on release-recapture. American Fisheries Society, 1987 (Monograph No. 5)
[Cochran 1977] Cochran, W.: Sampling techniques. Wiley, 1977 (Wiley series in probability and mathematical statistics: Applied probability and statistics). - ISBN 9780471162407
[Davison et al. 1986]
Davison, A. ; Hinkley, D. ; Schlechtmann, E.: Efficient Bootstrap Simulation. In: Biometrika 73 (1986), S. 555-566
[Didas 2009] Didas, C.: Sampling and classification of tree holes within a Northeast temperate forest system. Durham, University of New Hampshire, Diplomarbeit, 2009
[Ducey 2014] Ducey, M.: Forestry resources: Taking lasers into the forest for new efficient field sampling techniques. 2014
[Ducey \& Astrup 2013] Ducey, M. J. ; Astrup, R.: Adjusting for nondetection in forest inventories derived from terrestrial laser scanning. In: Canadian Journal of Remote Sensing 39 (2013), Nr. 5, S. 410-425
[Fewster et al. 2009] Fewster, R. M. ; Buckland, S. T. ; Burnham, K. P. ; Borchers, D. L. ; Jupp, P. E. ; Laake, J. L. ; Thomas, L.: Estimating the Encounter Rate Variance in Distance Sampling. In: Biometrics 65 (2009), Mar, Nr. 1, S. 225-236
research 35 (2005), Nr. 12, S. 2900-2910
[Kissa \& Sheil 2012] Kissa, D. ; Sheil, D.: Visual detection based distance sampling offers efficient density estimation for distinctive low abundance tropical forest tree species in complex terrain. In: Forest Ecology and Management 263 (2012), S. 114-121. - ISSN 0378-1127
[Mandallaz 2008] Mandallaz, D.: Sampling techniques for forest inventories. Boca Raton: Chapman and Hall / CRC, 2008. - 256 S
[Marques et al. 2011] Marques, T. ; Buckland, S. T. ; Borchers, D. L. ; Rexstad, E. ; Thomas, L.: Distance Sampling. In: Lovric, M. (Hrsg.): International Encyclopedia of Statistical Sciences. Springer-Verlag, 2011, S. 398-400
[Møller \& Waagepetersen 2003] Møller, J. ; Waagepetersen, R.: Statistical Inference and Simulation for Spatial Point Processes. Chapman and Hall, 2003
[Müller-Using \& Bartsch 2009] Müller-Using, S. ; Bartsch, N.: Decay dynamic of coarse and fine woody debris of a beech (Fagus sylvatica L.) forest in Central Germany. In: European Journal of Forest Research 128 (2009), Nr. 3, S. 287-296
[Ritter \& Saborowski 2010] Ritter, T. ; Saborowski, J.: Effiziente Totholzinventuren mit Point Transect Sampling: Projektvorstellung, Methodenvergleich und erste Zwischenergebnisse. In: Die Grüne Reihe Bd. 21 (Tharand, 21.-22. Sep. 2009) Deutscher Verband Forstlicher Forschungsanstalten, Sektion Forstliche Biometrie und Informatik (Veranst.), 2010, S. 23-30
[Ritter \& Saborowski 2012] Ritter, T. ; Saborowski, J.: Point transect sampling of deadwood: a comparison with well established sampling techniques for the estimation of volume and carbon storage in managed forests. In: European Journal of Forest Research 131 (2012), Nr. 6, S. 1845-1856
[Ritter \& Saborowski 2014] Ritter, T. ; Saborowski, J.: Efficient integration of a deadwood inventory into an existing forest inventory carried out as two phase sampling for stratification. In: Forestry - An International Journal of Forest Research 87 (2014), Nr. 4, S. 571-581
[Ritter et al. 2013] Ritter, T. ; Nothdurft, A. ; Saborowski, J.: Correcting the nondetection bias of angle count sampling. In: Canadian Journal of Forest Research 43 (2013), S. 344-354
[Saborowski et al. 2010] Saborowski, J. ; Marx, A. ; Nagel, J. ; Boeckmann, T.: Double sampling for stratification in periodic inventories - Infinite population approachn. In: Forest Ecology and Management 260 (2010), OCT 15, Nr. 10, S. 1886-1895. - ISSN 0378-1127
[Seber 1982] Seber, G.: The Estimation of Animal Abundance and Related Parameters. New York : Macmillian, 1982
[Thomas et al. 2012] Thomas, L. ; Buckland, S. T. ; Burnham, K. P. ; Anderson, D. R. ; Laake, J. L. ; Borchers, D. L. ; Strindberg, S.: Distance Sampling. In: El-Shaarawi, A. H. (Hrsg.) ; Piegorsch, W. W. (Hrsg.): Encyclopedia of Environmetrics Bd. I. John Wiley and Sons, 2012, S. 687-697

Don't hesitate to contact me:

- tim.ritter@boku.ac.at
- http://www.wabo.boku.ac.at/en/wafo/personen/

Liegendes Totholz - Vorrat

$\underline{\Delta}$

Type of DW	Sampling campaign	Sampling technique	\hat{Y} $\left[\mathrm{~m}^{3} \mathrm{ha}^{-1}\right]$	$\mathrm{SE}(\hat{\bar{Y}})$ $\left[\mathrm{m}^{3} \mathrm{ha}^{-1}\right]$
CWD $(d \geq 15 \mathrm{~cm})$	Summer	FAS	8.54	0.95
		LIS	7.73	1.18
	Winter	FAS	7.97	0.99
CWD $(d \geq 7 \mathrm{~cm})$		LIS	7.96	1.18
		FAS	13.10	1.10
		LIS	13.90	1.37

Liegendes Totholz - Effizienzvergleich

Type of DW	Sampling campaign	Sampling technique	N	$\begin{array}{r} \hat{T} \\ {[\mathrm{~min}]} \end{array}$	$\begin{array}{r} \mathrm{SE}(\hat{Y}) \\ {\left[\mathrm{m}^{3} \mathrm{ha}^{-1}\right]} \end{array}$	$\mathrm{CV}(\hat{Y})$ [\%]
CWD$(d \geq 15 \mathrm{~cm})$	Summer	LIS (all ph-2 points)	600	3626	0.682	8.8
		FAS (all ph-2 points)	600	8471	0.535	6.3
		FAS (optimal allocation)	285	4086	0.682	8.0
		FAS (allocation prop. to ph-1)	311	4398	0.682	8.0
		FAS (allocation prop. to ph-2)	367	5176	0.682	8.0
	Winter	LIS (all ph-2 points)	600	3053	0.681	8.6
		FAS (all ph-2 points)	600	5866	0.549	6.9
		FAS (optimal allocation)	323	3176	0.681	8.6
		FAS (allocation prop. to ph-1)	356	3420	0.681	8.6
		FAS (allocation prop. to ph-2)	387	3788	0.681	8.6
$\begin{aligned} & \text { CWD } \\ & (d \geq 7 \mathrm{~cm}) \end{aligned}$	Summer	LIS (all ph-2 points)	600	3918	0.793	5.7
		FAS (all ph-2 points)	600	15747	0.622	4.8
		FAS (optimal allocation)	277	7566	0.793	6.1
		FAS (allocation prop. to ph-1)	302	8213	0.793	6.1
		FAS (allocation prop. to ph-2)	368	9656	0.793	6.1

"'Zero-Inflation"'

Auswahl der Entdeckungsfunktion

AIC basierte Modellauswahl

- $\hat{g}(r) \propto \operatorname{key}(r)[\operatorname{series}(r)]$
- Straten als Kovariate
- Alle möglichen Kombinationen von Schlüsselfunktion (key) und seriellem Anpassungsterm max. 5 Grades (series)

Schlüsselfunktionen

- Uniform: $\hat{g}(r)=1 / \omega$
- Halb-Normal: $\hat{g}(r)=e^{-0,5 r^{2} / \sigma^{2}}$
- Hazard-Rate:

$$
\hat{g}(r)=1-e^{-(r / \sigma)^{-b}}
$$

Serielle Anpassungsterme

- Cosin: $\sum_{k=2}^{q} a_{k} \cos \left(\frac{k \pi r}{\omega}\right)$
- Polynominal: $\sum_{k=2}^{q} a_{k}\left(\frac{r}{\omega}\right)^{2 k}$
- Kein Anpassungsterm

Wahrscheinlichkeitsdichte

Anpassung von $\hat{f}(r)$ an die empirischen Daten,

$g(r)$ ergibt sich dann aus

$$
g(r)=\frac{r \cdot f^{\prime}(0)}{f(r)}
$$

Die Objektdichte kann direkt aus der pdf geschätzt werden:

$$
\hat{D}=\frac{m \cdot \hat{f}^{\prime}(0)}{2 \pi n}
$$

da

$$
P_{a}=\frac{2}{\omega^{2} f^{\prime}(0)}
$$

Schätzung des mittleres Objektvolumen

三

Log-Transformation:

$$
z_{i}=\log _{e}\left(s_{i}\right)
$$

Mittleres (transformiertes) Volumen der entdeckten Objekte:

$$
\hat{E}_{d}(z \mid r)=a+b \cdot \hat{g}(r)
$$

Mittleres Objektvolumen:

$$
\begin{gathered}
\hat{E}(z)=\hat{E}_{d}(z \mid r=0)=a+b \\
\hat{E}(s)=e^{a+b+\widehat{\operatorname{var}}(\hat{z}) / 2}
\end{gathered}
$$

Analytische Varianzschätzung beim PTS

Die Varianzschätzung beim PTS erfolgt nach der Delta-Methode (Seber, 1982; zitiert nach Buckland et al., 2001):

$$
\widehat{\operatorname{var}}\left(\hat{\bar{Y}}_{h}\right)=\hat{\bar{Y}}_{h}^{2} \cdot\left(\frac{\widehat{\operatorname{var}}\left(m_{h}\right)}{m_{h}^{2}}+\frac{\widehat{\operatorname{var}}\left(a \cdot \hat{P}_{a_{h}}\right)}{\left(a \cdot \hat{P}_{a_{h}}\right)^{2}}+\frac{\widehat{\operatorname{var}}\left(\hat{E}_{h}(s)\right)}{\left(\hat{E}_{h}(s)\right)^{2}}\right)
$$

mit

$$
\begin{array}{ll}
\widehat{\operatorname{var}}\left(m_{h}\right) & =\frac{1}{n_{h}\left(n_{h}-1\right)} \sum_{i=1}^{n_{h}}\left(m_{h i}-\bar{m}_{h}\right)^{2} \\
\widehat{\operatorname{var}}\left(a \cdot \hat{P}_{a_{h}}\right) & =\frac{1}{m_{h} \hat{\sigma}_{h}^{4}} \\
\widehat{\operatorname{var}}\left(\hat{E}_{h}(s)\right) & =e^{2(a+b)+\widehat{\operatorname{var}(\hat{z})} \cdot\left(1+\frac{\widehat{\operatorname{var}}(\hat{z})}{2}\right) \cdot \frac{\widehat{\operatorname{var}}(\hat{z})}{m_{h}}}
\end{array}
$$

Bootstrap Varianzschätzung beim PTS

三

Die Bootstrapvarianz (Davison et al., 1986) kann analytisch aus den Bootstrapvarianzen der einzelnen Komponenten zusammengesetzt werden:

$$
\widehat{\operatorname{var}}_{B 1}\left(\hat{Y}_{h B}\right)=\hat{Y}_{h B}^{2} \cdot\left(\frac{\widehat{\operatorname{var}}_{h B}\left(m_{h B}\right)}{m_{h B}^{2}}+\frac{\widehat{\operatorname{var}}_{B}\left(a \cdot \hat{P}_{a_{h} B}\right)}{\left(a \cdot \hat{P}_{a_{h} B}\right)^{2}}+\frac{\widehat{\operatorname{var}}_{B}\left(\hat{E}(s)_{B}\right)}{\left(\hat{E}(s)_{B}\right)^{2}}\right)
$$

Alternativ kann sie direkt geschätzt werden (Buckland et al., 2001):

$$
\widehat{\operatorname{var}}_{B 2}\left(\hat{\bar{Y}}_{h B}\right)=\frac{\sum_{i=1}^{B}\left(\hat{\bar{Y}}_{h(i)}-\hat{\bar{Y}}_{h B}\right)^{2}}{B-1}
$$

Konfidenzintervalle

Analytisches Konfidenzintervall für \bar{Y}_{h} :

$$
C I_{A(\bar{Y})}=\left[\frac{\hat{Y}_{h}}{e^{z_{\alpha} \cdot \sqrt{\widehat{\operatorname{var}}\left(\log _{e} \hat{Y}_{h}\right)}}} ; \quad \hat{Y}_{h} \cdot e^{z_{\alpha} \cdot \sqrt{\widehat{\operatorname{var}\left(\log _{e} \hat{Y}_{h}\right)}}}\right]
$$

unter der Voraussetzung $m_{i} \stackrel{\text { i.i.d. }}{\sim} \operatorname{LN}\left(\mu, \sigma^{2}\right)$ (Burnham et al., 1987).
Bootstrap-Konfidenzintervall für \bar{Y}_{h} :

$$
C I_{B(\bar{Y})}=\left[\begin{array}{ll}
\hat{Y}_{h(B+1) \alpha} & ; \hat{\bar{Y}}_{h(B+1)(1-\alpha)}
\end{array}\right]
$$

unter der Voraussetzung $m_{i} \stackrel{\text { i.i.d. }}{\sim} \mathrm{D}$

Softwarebug bei der Schätzung von var(m)

Designbasierter Varianzschätzer P2 (Fewster et al., 2009):

$$
\widehat{\operatorname{var}}_{P 2}\left(\frac{1}{n} \sum_{r=1}^{n} \frac{m_{r}}{t_{r}}\right)=\frac{1}{n(n-1)} \sum_{i=1}^{n}\left(\frac{m_{i}}{t_{i}}-\frac{1}{n} \sum_{r=1}^{n} \frac{m_{r}}{t_{r}}\right)^{2}
$$

$P 2$ gewichtet Stichprobenpunkte unabhängig von ihrem t_{i} gleich. Modellbasierter Varianzschätzer P3 (Fewster et al., 2009):

$$
\widehat{\operatorname{var}}_{P 3}\left(\frac{m}{T}\right)=\frac{1}{T(m-1)} \sum_{i=1}^{m} t_{i}\left(\frac{m_{i}}{t_{i}}-\frac{m}{T}\right)^{2}
$$

$P 3$ gewichtet Stichprobenpunkte mit hohem t_{i} stärker als solche mit niedrigem t_{i}.

Softwarebug bei der Schätzung von var(m)

Gleichheit der Schätzer Wenn $t_{i}=t$ (für alle i) gilt (Fewster et al., 2009):

$$
\widehat{\operatorname{var}}_{P 1}\left(\frac{m}{n t}\right)=\widehat{\operatorname{var}}_{P 2}\left(\frac{1}{n} \sum_{r=1}^{n} \frac{m_{r}}{t_{r}}\right)=\widehat{\operatorname{var}} P 3\left(\frac{m}{T}\right)=\widehat{\operatorname{var}}\left(\frac{\bar{m}}{t}\right)=\frac{1}{t^{2} k(k-1)} \sum_{i=1}^{k}\left(n_{i}-\bar{n}\right)^{2}
$$

Wenn $t_{i}=1$ (für alle i) gilt, ist $T=n$ und somit eine weitere Vereinfachung möglich:

$$
\widehat{\operatorname{var}}_{P 1}\left(\frac{m}{n t}\right)=\widehat{\operatorname{var}}\left(\frac{m}{n}\right)=\frac{1}{n(n-1)} \sum_{i=1}^{n}\left(m_{i}-\bar{m}\right)^{2}
$$

Im Falle der von uns durchgeführten Totholzinventur ist (innerhalb einer Aufnahmekampagne) $t_{i}=1$ (für alle i) und somit

$$
\widehat{\operatorname{var}}_{P 1}\left(\frac{m}{n t}\right)=\widehat{\operatorname{var}}_{P 2}\left(\frac{1}{n} \sum_{r=1}^{n} \frac{m_{r}}{t_{r}}\right)=\widehat{\operatorname{var}}_{P 3}\left(\frac{m}{T}\right)=\widehat{\operatorname{var}}\left(\frac{m}{n}\right)=\frac{1}{n^{2}} \widehat{\operatorname{var}}(m)
$$

Arbeitszeiten

Grundidee:

Einteilung in

- Entscheidungsrelevante Arbeitszeit (Suchen und Vermessen der Totholzobjekte am Stichprobenpunkt)
- Entscheidungsirrelevante Arbeitszeit (Fahrtzeiten, Aufsuchen und Einmessen der Stichprobenpunkte)

Zeitstudie:

Mit eingespielten Aufnahmeteams wurde die entscheidungsrelevante Arbeitszeit an einigen Stichprobenpunkten t_{i} ermittelt
Schätzung der fehlenden Daten mittels linearer Regression:

$$
\hat{t}_{i}=\beta_{0}+\beta_{1} \cdot m_{i}
$$

Arbeitszeiten 2

Die niedersächsische Betriebsinventur

Mittleres Volumen über alle Straten (Cochran, 1977):

$$
\begin{equation*}
\hat{Y}=\sum_{h=1}^{L} \frac{n_{h}^{\prime}}{n^{\prime}} \hat{Y}_{h}=\sum_{h=1}^{L}\left(\frac{n_{h}^{\prime}}{n^{\prime}} \frac{1}{n_{h}} \sum_{i=1}^{n_{h}} Y_{h i}\right) \tag{12}
\end{equation*}
$$

Varianz (Saborowski et al., 2010):

$$
\begin{equation*}
\widehat{\operatorname{var}}(\hat{Y})=\frac{1}{n^{\prime}-1}\left(\sum_{h=1}^{L} \frac{n_{h}^{\prime}-1}{n^{\prime}} n_{h}^{\prime} \widehat{\operatorname{var}}\left(\hat{Y}_{h}\right)+\sum_{h=1}^{L} \frac{n_{h}^{\prime}}{n^{\prime}}\left(\hat{Y}_{h}-\hat{Y}\right)^{2}\right) \tag{13}
\end{equation*}
$$

Optimierung von Stichprobenumfang und Allokation

Notwendiger Stichprobenumfang, um eine geforderte Genauigkeit zu erreichen (Cochran, 1977)

- Fixe Arbeitszeit T

$$
n=\left(T \sum_{h=1}^{L} n_{h}^{\prime} S_{h} / \sqrt{\bar{t}_{h}}\right)\left(\sum_{h=1}^{L} n_{h}^{\prime} S_{h} \sqrt{\bar{t}_{h}}\right)^{-1}
$$

- Fixer SE

$$
n=\left(\sum_{h=1}^{L} \frac{n_{h}^{\prime}}{n^{\prime}} S_{h} \sqrt{\overline{t_{h}}}\right)\left(\sum_{h=1}^{L} \frac{n_{h}^{\prime}}{n^{\prime}} S_{h} / \sqrt{\bar{t}_{h}}\right)\left(\operatorname{var}(\hat{\bar{Y}})+\frac{1}{n^{\prime}} \sum_{h=1}^{L} \frac{n_{h}^{\prime}}{n^{\prime}} S_{h}^{2}\right)^{-1}
$$

Optimale Allokation der Stichprobenpunkte (Cochran, 1977)

$$
n_{h}=n\left(n_{h}^{\prime} S_{h} / \sqrt{t_{h}}\right)\left(\sum_{h=1}^{L} n_{h}^{\prime} S_{h} / \sqrt{t_{h}}\right)^{-1}
$$

Zusammenhang von Stichprobenumfang und Schätzgenauigkeit

Innerhalb eines Stratums gilt:

$$
n_{\text {notwendig }}=\frac{\mathrm{SE}_{\text {Pilotinventur }}^{2} \cdot n_{\text {Pilotinventur }}}{\mathrm{SE}_{\text {gefordert }}^{2}}
$$

bzw.

$$
\mathrm{SE}_{\text {resultierend }}^{2}=\frac{\mathrm{SE}_{\text {Pilotinventur }}^{2} \cdot n_{\text {Pilotinventur }}}{n_{\text {bezahlbar }}}
$$

Überblick

Е

Datensatz

- Zwei simulierte Punktmuster
- Vollständig zufällige räumliche Verteilung (Poisson-Prozess)
- Geklumpte Population (Log-Gauss-Cox-Prozess), angepasst an den "'Hainich Datensatz"' (Bauhus \& Wirth, unveröffentlicht)
- Durchmesserverteilung aus dem Hainich Datensatz abgeleitet (2-parametrige Weibull-Verteilung)
- Entdeckungsfunktion aus den Feldaufnahmen
- 999 Simulationsläufe mit 225 Stichprobenpunkten
- zufällig verteilt
- systematisches Stichprobengitter mit zufälligem Startpunkt

Punktprozesse

Poisson-Prozess N :

N zeichnet sich durch zwei Eigenschaften aus (Illian et al., 2008):

- Die Anzahl der Punkte von N in allen finiten Teilmengen B folgt einer Poisson-Verteilung mit Mittelwert $\lambda \nu(B)$.
- Die Anzahl der Punkte von N in k disjunkten Teilmengen bildet k stochastisch unabhängige Zufallsvariablen

Log-Gauss-Cox-Process (LGCP):

Ein LGCP ist ein inhomogener Poisson-Prozess mit zufälligem Intensitäts-Prozess

$$
\Lambda(x)=\exp (Z(x))
$$

wobei $Z(x)$ ein stationäres und isotropes Gauss-Zufallsfeld ist (Illian et al., 2008). Die Intensität des LGCP ist (Møller \& Waagepetersen, 2003)

$$
\lambda=E \Lambda(x)=\exp \left(\mu+\frac{\theta^{2}}{2}\right)
$$

Realisation der Punktprozesse

!

