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Objective: Nanocellulosic porous 
filtration tube 

Orelma, H. et al.  RSC Adv., 2014, 4, 51440-51450 



Wood based cellulose nanofibrils 

•  Non-toxicity against living organisms 
•  Strength and stability 
•  High surface area 
•  A high number of accessible OH-groups 

for chemical modification 
 

Tingaut et al. J. Mater. Chem. , 2012, 22, 20105-20111 



Microbial cellulose / bacterial cellulose 

•  Acetobacter, Agrobacterium, Alcaligenes, 
Pseudomonas, Rhizobium or Sarcina are able to 
extracellularly produce cellulose 

–  Acetobacter xylinum/Gluconacetobacter xylinus is 
considered to be the most efficient strain 

–  Continuous sources of air and carbon are required  
–  Cellulose yield of 35-40% in relation to the applied 

glucose 
 

•  Acetobacter microfibrils usually have high crystal 
structure and thickness in the range of 6-10 nm  

 
•  Bacterial cellulose has a high degree of polymerization 
      in the range of 4000-10000 anhydroglucose units 

–  Contains more than 99 % water 
–  Excellent wet strength 

(Klemm et al. 2011, Angewandte 
Chemie International Edition, vol. 50, 
no. 24, pp. 5438-5466) 

P. Gatenholm, D. Klemm, MRS Bull.  
2010, 35, 208 – 213. 



Applications of bacterial cellulose 

Skin therapy 

Artificial blood vessels 

Scaffolds for tissue engineering 

Nanopaper and paper additives 

Food 

W. Czaja. et al. 2006 
Biomaterials, 27 2  

Kowalska-Ludwicka, Karolina et al. 
Archives of Medical Science : AMS 9.3 
(2013): 527–534. PMC. Web. 2 Mar. 2015. 

Pure bacterial cellulose 

Nata de Coco 

de Olyveira et al. Bacterial Nanocellulose  
for Medicine Regenerative. J. Nanotechnol. 
Eng. Med. 2(3), 034001 (2012) 

http://
healthcarenutritionlifestyle.blogs
pot.fi/2012/11/be-slim-with-nata-
de-coco.html 03/05/15 



Bacteria 

Incubation conditions and modification 
strategies of BC 

Suitable carbon sources 
Ø  Monosaccharides 

•  Glucose 
•  Fructose 
•  Galactose 
•  Xylose 

Ø  Disaccharides 
•  Sucrose 

Ø  Polysaccharides 
•  Starch 

Ø  Alcohols and other sources 
•  Glycerol 
•  Ethanol 
•  Arabitol 
•  Coconut water 
•  Fruit juices 

Carbon source + Phosphate + Air + additives Bacterial cellulose 

In-situ Ex-situ  
Modification strategies 

-Carboxymethyl cellulose (CMC) 
-Chitosan 
-Xyloglucan (XG) 
-Hydroxylethylcellulose (HEC) 
-Polyvinyl alcohol (PVA) 
-Polyethylene oxide (PEO) 
 

Agent 

Bacteria 

Traditional cellulose 
modification strategies 
can be employed 
•  TEMPO-mediated 

oxidation 
•  Carboxymethylation 
•  Esterification 
•  Amination 

Pellicle 



Filtering properties of BC 

Physical properties of BC 
 

Molecular cut-off 
•  Never dried membrane up to 66 kDA (BSA) 

Sokolnicki et al. 2006. J. Membr. Sci. 272. 15-27. 
 

•  Dried membrane 20 kDa (PEG) 
Shibazaki et al. 1993. J. Appl. Pol. Sci. 50. 965-969. 

 
Pressure resistance 

•  Up to 880 mmHg (1.17 bar) 
Bodin et al. 2006. Biotechnol. Bioeng. 97(2). 425-434. 

 
Chemistry 

•  No electrostatic interactions with proteins 
 

•  Highly stable due to high crystallinity degree 
Vanderhart et al. 1984. Macromolecules. 17. 1465-1472. 



Anti-HSA affibodies 
Affibodies: 
•  engineered antibody mimics 
•  usable in therapeutic, diagnostic and 

biotechnological applications 
•  antigen binding site similar to native 

antibodies 
•  antigen affinity equal to native antibodies 

Advantages: 
•  small size 
•  simple molecular structure 
•  robust physical properties  
•  ability to fold intracellularly  

Images from Gremel et al. 2013. Frontiers in oncology. 271. 
Review paper: Löfblom et al. 2010. FEBS letters. 584(12), 2670-2680. 
 

Human IgG 

Affibody 

150 kDa 

14 kDa 

Fab 
fragment 

Fc region 



Preparation of bacterial cellulose tubes 

 Strain and incubation conditions: 
§  Hestrin-Schramm (HS) medium at fixed pH of 4.5 

§  Gluconoacetobacter medellenisis (G. medellinensis) 

§  Closed vessel with permeable silicone tubes 

§  Statical incubation at 28 C for 9 days 

Carboxymethyl cellulose (CMC) 



Conjugation of affibodies onto the CMC 
modified BC-tubes via EDC/NHS chemistry 

Hollow BC-tube 
with in-situ CMC 
modification 

q Conjugations of 0.1 mg/ml anti-HSA to CMC with 0.1 M 
EDC + 0.4 M NHS in 10 mM NaOAc buffer at pH 5 



Characterization methods 

 Wet methods 
 
•  Conductometric titration 

(SCAN-CM 65:02) 
•  Charge density of BC after 

CMC addition 
•  Water retention value (SCAN-C 

62:00) 
•  Bound water and irreversible 

structural changes of BC 
•  Surface Plasmon Resonance 

 (SPR) 
•  Interactions between cellulose,   
 CMC and proteins 

 Dry methods 
 
•  Imaging with SEM 

•  Surface topography of BC  
•  Lyophilized via liquid nitrogen 
•  Surface and cross-section 

•  Fluorescence imaging with Confocal 
Laser Scanning Microscopy (CLSM) 

•  Dansylated HSA 
•  Tubes were lyophilized via liquid 

nitrogen 



Methods: Interaction analyses with 
Surface Plasmon Resonance (SPR) 

SPR and cellulose model surfaces 
•  Multimode SPR Navi 200, Oy Bionavis 

Ltd. 
•  Angular scan mode 
•  Langmuir-Schaefer deposited TMSC 

based cellulose surfaces 
•  Cellulose II content up to 70% 

•  Thickness was modelled with a model 
𝑑= ​​𝑙↓𝑑 /2 ​​∆↓𝑆𝑃𝑅 𝑎𝑛𝑔𝑙𝑒 /𝑚( ​𝑛↓𝑎 − ​
𝑛↓0 )  
•  Surface coverage was calculated with 

an equation 
  Γ=𝑑∗𝜌 Matthew A. Cooper, Nature Reviews Drug Discovery 1, 515-528 (2002) 

SPR model from Jung et al. Langmuir 1998, 14, 5636-5648 



Topography of BC tubes  

Pure BC 

BC grown with 2 g/l CMC 

Inner surface Cross-section 

Physical properties of grown BC tubes 
•  Length ~20 cm 
•  Diameter ~1 cm 
•  Wall thickness (wet) 1.8 ± 0.2 mm 
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•  CMC has a small effect on the WRV of never dried BC 
•  Considerable effect on water binding properties of dried BC 
•  Highest charge was obtained with CMC additions above 2 g/l 
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•  WRV of air-dried TEMPO-oxidized BC sample is lower than 
that of air-dried CMC-BC samples  

•  Hornification occurs to a greater extent when the carboxyl 
groups are located only on the surface of BC-fibrils 



Conjugation of anti-HSA affibodies 
onto cellulose monitored by SPR 
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•  Specific binding of HSA on the prepared anti-HSA affibody 
biointerfaces was approximately eight-fold higher (~81 vs. 
10 ng/cm2) when anti-HSA was conjugated onto cellulose 
via EDC/NHS chemistry  



Effect of CMC on the adsorption of 
HSA on cellulose 
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CMC modified cellulose 

CMC modification lowers the non-specific adsorption of HSA on cellulose 
§  Hydrogel like structure 
§  Anionic charge of CMC 

HSA adsorption: 
Biointerface 81 ng/cm2 

Unmodified cellulose 57 ng/cm2 
CMC-modified cellulose 10 ng/cm2 



Biofiltration of fluorescence stained 
proteins with functionalized BC-tubes 
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Anti-HSA-CMC-BC 

Anti-HSA-TEMPO-BC 

•  Elevated fluorescence with conjugated anti-HSA  
•  CMC modification decreases the background noise (when 

compared to that of TEMPO-oxidized samples) 

CMC-BC with 
anti-HSA 
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anti-HSA 

Background 
CMC-BC 

D
an

sy
la

te
d 

-H
SA

 



Concluding remarks 

•  Bacterial tubes were incubated with a presence of CMC 
 
•  CMC lowers permanent changes in BC within drying 
 
•  Affibodies were covalently conjugated to BC-tubes via 

EDC/NHS chemistry 
 
•  BC-tubes were utilized on the specific detection of HSA 



Acknowledgements 


