

ABTCP CONFERENCE IN SAO PAULO

ADVANCED TECHNOLOGY FOR EFFLUENT TREATMENT AND SLUDGE DEWATERING

17 October, 2005

Opening and introduction at 9:00 - 9:30 1. Effluent discharge from different P&P processes at 9:30 – 11.00 2. Coffee break at 11:00 - 11:30 at 11:30 - 13.00 Effluent treatment processes 3. **Primary treatment** Different secondary treatment solutions **Tertiary treatment** Lunch at 13:00 - 14.30 Effluent treatment processes continue at 14:30 - 15.00 4. Sludge dewatering at 15:00 - 16.00 5. Break at 16:00 - 16.15 Bleach filtrate recycle in kraft pulp mills at 16:15 - 16.45 6. Zero liquid discharge, case presentation at 16:45 - 17.30 7.

Introduction of VE, VW, VWS, HPD, AQF

Veolia Environnement

One Group 🗢 4 Business Units

Veolia Water : Key Figures (1/2)

11.3 billion euros in revenues for 2003

Presence in over 100 countries

Over 110 million people served

77, 723 employees

Data source :VE results 2003

VEOLIA Water Systems

VWS: The Partner of Industrials

Pulp & Paper

Aracruz, Veracel, Klabin, Cenibra,
 VCP, Champion (IP), Bahia Sul,
 Arauco, CMPC, Cartiere Burgo,
 Kimberly Clark, Stora Enso,
 UPM-Kymmene, Myllykoski ...

Others markets

- HPI/CPI
- Metal treatment
- Power
- Microelectronics
- Automobile
- Pharmaceuticals, Cosmetics
- Food & Beverage industry

VEOLIA Water Systems Brasil

- Present in LA since 1993
- Operational Merge of OTV Brasil and USF Brasil
- Two business lines:
 - D&B
 - Solutions
- 2003 revenue Euros 44 million
- 304 employees (50% in Brazil)
- 40 engineers

Veolia Water Systems Offer

Design-Build Capabilities

- Design-build solutions for municipalities and industrial customers
- Integrated water and wastewater systems, wastewater reuse, sludge treatment
- Engineering & Construction services for Turn-Key supplies:
 - Problem identification and treatability analysis
 - Process design
 - Basic and detailed engineering
 - Project Management
 - Local equipment manufacturing

Aquaflow Ltd. by VEOLIA Water Systems	1999
USF Aquaflow Ltd.	1997
Ahlstrom Aquaflow Ltd.	1989
Ahlstrom Corporation	1987
Enso-Gutzeit Oy (Stora Enso)	1962

Mr Heimo TOIVIAINEN

- VWS BUSINESS DEVELOPMENT DIRECTOR IN THE P&P INDUSTRY
- 1989 2004: MANAGING DIRECTOR OF AQUAFLOW
- STARTED IN 1974 IN EFFLUENT TREATMENT IN THE P&P: ENSO-GUTZEIT (STORA ENSO) AHLSTROM AQUAFLOW

Wastewater from Pulp and Paper Processes

EOLIA Water

Worldwide Pulp and Paper Production

PRODUCTION

- 182 million ton pulp per year
- 330 million ton paper per year

WASTEWATER TO TREATMENT

- About 30-35 billion m³ wastewater generated per year
- About 25-30 million ton COD generated per year

Wastewater from Pulp and Paper Processes

Factors Impacting on Wastewater Composition and Characterists

- 1. Fibre raw material
- 2. Pulping and paper-making process
- 3. Process status
- 4. Process operation

Bleached Kraft Pulping Discharges

Process	COD
	kg/t pulp
Debarking	0 - 10
Brownstock area	0 - 7
Bleach plant	25 - 55
Evaporation conde	nsates 3 - 15
Spills	3 - 8
Total	31 - 95

Wastewater from Pulp and Paper Processes					
Main Co	omposition Organic	Inorganic			
Suspended	Fibres Bark	CaCO3 Soil			
Dissolved	Lignin derivatives (colour) Carbohydrates (sugars) Organic acids Chlorinated organics Nutrients (N, P)	Na, K, Ca, P Sulphates Chlorate Chlorides	VEOLIA		

- Wet vs. dry debarking process
 - Wet debarking has higher discharge figures
- Softwood higher Hardwood lower loads
- Wastewater contains:
 - TSS (bark residual, fibres, inorganic matter)
 - COD/BOD (dissolved and suspended material from logs)
 - Nutrients (P and N)
 - Toxic compounds (resin acids, fatty acids)

Wastewater from Pulp and Paper Processes

Kraft Pulp Bleaching

GENERAL

- Objective to bleach pulp from brown to white with oxidation chemicals (Chlorine Dioxide, Peroxide, Ozone)
- Many processes, most typical is Elemental Chlorine Free (ECF) bleaching using Chlorine Dioxide.
- Total Chlorine Free (TCF) processes employ Peroxide, Ozone as oxidation chemicals.
- Bleach plant excess filtrate normally sewered since contains Chlorides, Heavy Metals and other inorganics that may accumulate in recovery cycle.

BLEACHING WASTEWATER COMPOSITION AND LOADS ARE DEPENDENT ON:

- Washing loss (Amount of COD entering the Bleach plant)
- Kappa-factor (Amount of lignin in pulp)
 - Cooking process (Modified cooking)
 - Oxygen Delignification (OD)
- Bleaching process/Chemicals used
 - "C-stage"
 - Elemental chlorine stage
 - Chlorine Dioxide
 - TCF bleaching

Summary: Bleached Kraft Pulping

- Most common pulping process
- Main organic load originating from bleach plant
- About 50% of the COD is caused by lignin products that are non or slowly-biodegradable
- Chlorinated organic compounds in bleach plant effluents (AOX)
- Toxic compounds (resin and fatty acids) in debarking and bleach plant effluents

Sulphite Pulping

Sulphite Pulping Discharges

- Dissolving pulp mills may have high discharges (Hemicelulose)
- Cooking process generally driven further than in kraft pulping why bleach plant discharges are normally lower
- TCF bleaching common
 no chlorinated compounds
- Condenstes contain high amount of acetic acid and furfural

Summary: Sulphite Pulping

- Common in Central-Europe and China but being outphased in other areas
- Main organic load originating from condensates and bleach plant
- Condensates high in COD concentration
- Acetic acid and furfural in condensates
- Toxic compounds (resin and fatty acids) in debarking and effluents

Wastewater from Pulp and Paper Processes

Mechanical Pulping Processes

- Processes include
 - Chemi-thermomechanical pulping (CTMP)
 - Thermo-mechanical pulping (TMP)
 - Stone Groundwood (SGW or GW)
 - Pressurised Groundwood (PGW)
- Mechanical defibration in refiners or with stone
- Chemical pretreatment in CTMP process (Na2SO3 and/or NaOH and Na2CO3)
- Typical for mechanical processes is high yield on wood

Mechanical Pulping Processes

- Mechanical pulping is normally INTEGRATED with paper production
 - Newsprint paper (TMP+ paper machine)
 - Journal paper (GW, TMP + paper machine)
- Some CTMP mills are stand-alone others integrated

Wastewater from Pulp and Paper Processes

BCTMP Process

VEOLIA Water

Mechanical Pulping Discharges

Discharges from mechanical pulping processes are primarily dependent on:

- Pulp yield
- Pulp bleaching method

Recycled Fibre

- Two main cartegories
 - Mechanical cleaning (pulping) of wastepaper/board only
 - Testliner
 - Corrugated medium
 - Uncoated board
 - Mechanical cleaning and de-inking
 - Tissue
 - Printing and copy paper
 - Magazine
 - Coated board and cartonboard
 - Market DIP
- Wastewater quality much dependent on wastepaper quality
- May have almost closed water loops

- In paper making processes water are recirculated at a high degree – only excess water "whitewater" and rejects are normally discharged
- Wastewater contaminants originate from:
 - Pulp
 - Refining of pulp
 - Sizing agents (starch)
 - Fillers and Coating material (caoline, CaCO₃,etc)

Special Features and Critical Topics

General

- All mill departments must be reviewed
- Which processes are applied? (debarking, pulping, bleaching,etc)
- Mill status (old mills have generally considerable higher discharges than new)
- Level of spill control
- Level of water conservation
- Review actual variations of loads

Special Features and Critical Topics

Process specific issues

Bleached kraft pulping

- Most common chemical pulping process
- Main portion of organic load from bleaching
- Bleach plant COD hard to degrade biologically
- Organic load mainly dependent on wood specie, kappa to BP and bleaching process

Unbleached kraft pulping

- Level of spills and washing loss of inmportance
- Water use sometimes very high

Special Features and Critical Topics

Sulphite pulping

- Main organic load originating from condensates and bleach plant
- Condensates high in COD concentration
- Acetic acid and furfural in condensates
- Toxic compounds (resin and fatty acids) in debarking and effluents

Mechanical pulping integrated with papermaking

- Wastewater loads originates primarily from mechical pulping
- High amount of collodial matter
- Inorganic matter (clay) if fillers or coating applied in papermaking

Special Features and Critical Topics Process specific issues

Recycled fibre

- Discharges vary within wide range depending on technical status
- Some mills are almost "effluent-free"

Non-integrated papermaking

- Low amounts of organic matter
- Wastewaters may be colored if colored paper are produced

Aquaflow Competence Center in the P&P Industry

PRIMARY TREATMENT

- P&P charasteristics
- Equipment
- Process selection

SECONDARY TREATMENT

- P&P charasteristics
- MBP process
- Process selection

TERTIARY TREATMENT

- Need of tertiary treatment
- Chemicals and processes

What is Typical for Primary Treatment in P&P Industry?

- High and variable amount of suspended solids in the inlet effluent
 - good functioning of primary treatment is emphasized in special situations (start-ups, stops and problems in the mill)
 - occasionally high amount of heavy inorganic material in the effluent (fillers, coating, DIP-sludge, lime mud)
 - poor sedimentation in certain effluents (GW, TMP, CTMP, coating agents)

Effluent Treatment Processes

What is Typical for Primary Treatment in P&P Industry?

Neutralization is normally required

- all the time
- or only for washing waters in mill stops

Cooling is normally required

- effluent temperature is normally 40-80°C
- wood chips, extractives and biological fouling

Aquaflow Equipment

Bucket screen

Primary clarifiers

Primary flotations

Primary Treatment Circular

Ø 3,8 m up to 24 m Depth 1,3 m -> 1,8 m

Depth 1,3 m -> 1,8 m

Equipment are Designed Just for P&P Industry Needs:

- Robust equipment for 24 h/d, 365 d/a
- Maintenance designed for 1-line systems
- Capabilities to handle:
 - High SS capacity
 - Heavy sludge
 - Hot effluents
 - Corrosive effluents

- + Low operating costs
- + Good buffer capacity for solids
- + Simple process
- + Suitable for very high solid contents
- Big footprint
- Long retention time, anaerobic acidification, smells, floating
- Long suction line for sludge, plugging of primary sludge pumps

- + Small footprint
- + Not sensitive for gases, no anaerobic acidification, less smells
- + Good function with chemicals, good results with small, light or charged particles
- + Lower civil costs
- Higher operating costs
- No buffer capacity for solids

Expected Purification Results in Primary Sedimentation (without Chemicals)

Effluent type	SS content after sedimentation (mg/l)	
Kraft pulp	70120	
Paper&board uncoated	40150	
Paper&board coated	100300	
TMP, GW	150400	
СТМР	3001000	
DIP	50200	VE
Semichemical, NSSC	3001000	W

- Relatively high COD concentration 500-13000 mg/l
- High temperature 35...38°C

Secondary Treatment

- Normally lack of nutrients \rightarrow N, P must be added
- Some effluents are very sensitive for filament problems
 - VFA, sugars, resin and fatty acids (TMP,CTMP, RCF, OCC, NSSC)
 - variation of produced paper (or pulp) grades
- Variation of harmful chemicals for biology
 - biosides
 - washing agents and dispersing agents
 - colours
 - (hydraulic) oil
 - black liqueur and soap spills (chemical pulp mills)

Minimum Biosludge Production = MBP Dispersed Bacteria in MBP Reactor

1st stage in the food chain

Minimum Biosludge Production = MBP Colony of Stalked Ciliates Eating

2nd stage in the food chain

Minimum Biosludge Production = MBP Ciliates and Suctoria

Minimum Biosludge Production = MBP Rotifers

Secondary Treatment

Minimum Biosludge Production = MBP Sludge Production Factor

Benefits of MBP

- 30-50 % lower sludge yield
- good settleability /excellent effluent quality
- stable operation in fluctuating loading conditions
- less chemicals in sludge dewatering
- higher dry solids in slude dewatering

MBBR (= Moving Bed Biofilm Reactor) Process

Secondary Treatment

MBBR (= Moving Bed Biofilm Reactor) Process

The process is based on the **biofilm principle** and the core of the process is the **biofilm carrier** elements made from polyethylene or polypropylene with a density close to that of water.

The carriers are designed to provide a <u>large protected surface</u> for the bacteria culture.

The reactors are filled up to 67% of their volume with these carrier elements.

The biofilm carrier elements are <u>kept suspended</u> in the water by air from the diffusers in the aerobic reactors and by means of a mixer in the anoxic reactors.

Secondary Treatment

MBBR Process; Moving Bed[™] Biofilm Reactor

MBBR (= Moving Bed Biofilm Reactor) Process, Different Carriers

Secondary Treatment MBBR (= Moving Bed Biofilm Reactor)

Aerobic reactor Anoxic reactor

Process, Mixing in Reactors

Secondary Treatment

MBBR (= Moving Bed Biofilm Reactor) Process

MBBR as sole biotreatment

MBBR as pretreatment (roughing, BAS)

MBBR as posttreatment (polishing)

MBBR in activated sludge (HYBAS/IFAS)

Process, Future Expansion

Increase filling degree by adding more biomedia

Needs of Tertiary Treatment

- environmental requirements for:
- Phosphorous

- Colour
- High(SS)
- (BOD)
- (Nitrogen)

Needs of Tertiary Treatment

- Renovation of old (lagoon based) biological processes
- Much lower investment costs, than completely new biological process
- Polishing process for difficult or filamentous sensitive effluents
- After high loaded processes

WELL DESIGNED TERTIARY TREATMENT GIVES SAFETY FOR TOTAL TREATMENT PROCESS

Chemical coagulation and/or flocculation

Filtration

- Sand filtration
- Microfiltration
- Membrane processes

Coagulation chemicals used:

- Aluminium sulphate/AVR, optimum pH 5-5,5
- Polyaluminiumchloride, PAC, optimum pH 5-5,5
- Ferric sulphate, optimum pH 4-5
- Ferrous sulphate + H2O2 = Fenton or Fennotriox
- Optimum pH 3-3,5
- Organic coagulants
- Lime

Chemical Coagulation and Flocculation

Flocculation chemicals used:

Polyacrylamides = Polymers(Bentonite)

Chemical Coagulation and Flocculation

Alternative separation processes:

- Flotation
 - Very reliable process for P&P effluents
- Sedimentation
- Filtration
 - Can be alternative only for low COD effluents
 - Not suitable for filamentous bulking problems

- Possibility to very low SS content (P,N)
- Only for low SS content effluents
- Sand filtration, microfilters
 - No reduction of dissolved substances without
 - chemicals
- Membrane processes
 - + selective treatment based on molecular size
 - high investment and operating costs
 - reject disposal
 - fouling

Project Cases

P.T. Riau Andalan Pulp & Paper Sumatra, Indonesia

Kraft pulp mill: 330 000 m³/d flow

Stora Enso Port Hawkesbury Mill, Nova Scotia, Canada

Project Cases

Stora Enso Norrsundet Mill, Sweden; Modification of Aerated Lagoon to Advanced AST Plant

MBP selector process:

- chlorate removal
- selector pluf flow
- SVI 60...70 mg/l
- •Sludge yield < 0.14 kg/kg COD</p>
- All targets of the mill were met.
- excellent treatment results
- excellent availability

Project Cases

Celulosa Arauco y Constitución S.A. Valdivia Mills, Chile

- MBP Selector Process
- Enchanced chlorate removal
- Selector plug flow
- Tertiary treatment

Celulosa Arauco y Constitución S.A.

Nueva Aldea Mills, Chile

Production: 555,000 t/a of pine and eucalyptus pulp

Mondi Ltd., Richards Bay Pulp Mill, South Africa

Minimization of Polution of the Rebuild Mill Based on BAT Treatment

Aquaflow MBP selector process

Kappa Kraftliner, Piteå, Sweden

Production: 700,000 t/a of paper and paperboard 500,000 t/a of pulp (kraft linerboard)

Stora Enso Celbi Pulp Mill, Portugal

Production: 295,000 Adt/a ECF bleached eucalyptus market kraft pulp

1 명이

Stora Enso Varkaus Mills, Finland

Aquaflow's AF-Float tertiary flotation plant treating 60 000 m³/d biologically treated effluent

M-real Lielahti Mills, Finland

AF-Float 9.5 x 1.3 tertiary treatment DAF, final protection against sludge bulking problems - Chemical COD and P removal

