Lignin extraction from black liquor
Per Tomani, Innventia
Outline

- My presentation will cover:
 - the LignoBoost process
 - touch on drivers
 - and consequences with lignin removal
The LignoBoost process

- Lignin OUT
- Lignin IN
 - Replacement of fossil fuel in lime kilns
 - 50 L mineral oil ptp can be saved

Evaporation → Recovery Boiler → Lime Kiln → Digester

Wood → Wood Chips → Bleaching → Pulp/Paper

Per Tomani, Innventia
October 2010
Lignoboost – Customer value today

- Increased pulp production
 - By reduced thermal load in the recovery boiler

- Reduced oil consumption – Go Green
 - Replacement of fossil fuel in the lime kiln with lignin

- Exporting revenue
 - Excess energy can be exported from market pulp mills to external users as energy, chemicals & materials

Per Tomani, Innventia
October 2010
The LignoBoost R&D history

1997: Start to work on lignin removal
2001: Breakthrough
2003: Bench scale
2004: Pilot scale (container size)
2005: Full-scale trials in a coal-fired heat & power plant in Stockholm resulted in a customer for a demo plant

June 2006: Innventia buys an old lignin plant & re-builds it
22 December 2006: Start-up of the LignoBoost demo
May 2006 – Nov 2008: Delivery of lignin and R&D
June 2008: The LignoBoost concept is sold to Metso, but Innventia still owns the Demo plant for R&D purposes.
2010: Swedish Energy Agency decides to support Södra Cell Mörrum. EU needs to give OK to this size of investment support.

Per Tomani, Innventia
October 2010
Typical LignoBoost SW lignin - from the demo plant

65-70 % DS
HHV (dry ash free): 26-27 MJ/kg

C: 63 - 66 %
H: 5.7 - 6.2 %
O: 26 - 27.5 %
S: 1.8 - 3.2 %
N: 0.1 - 0.2 %

Ash (dry): 0.2 - 1.4 %
Na: 120 - 230 g/kg ash
K: 25 - 80 g/kg ash

Per Tomani, Innventia
October 2010
The LignoBoost process

Spent acid &/or H₂SO₄ &/or
High pH

Liquor from digester

Wash liquid ~2 m³/t lignin

H₂SO₄ & Wash water pH 2.5

Washed Lignin

Liquor ~40%

Lignin lean liquor

CO₂

High pH

Low pH

Per Tomani, Innventia
October 2010
Pressfilter from Metso Minerals

- Low residual cake moisture
- High capacity
- Fully automatic operation
- Low maintenance costs due to few moving parts
- Easy to replace filter cloths

Per Tomani, Innventia
October 2010
Pressfilter operation

- Filling = Cake Formation & Filtration
- Membrane pressure
- Washing
- Membrane pressure
- Airblowing
- Open filter
 - Empty, Vibrations
- Washing of filter cloth
 - Vibrations
- Close filter
- Wait or Run

"Typical time": 15-30 minutes

Per Tomani, Innventia
October 2010
Arrangement of the filter plate pack

- Polypropylene plates
- Rubber membranes
Washing of the filter cloth

Spray nozzles

Wash water

Feed port

Per Tomani, Innventia
October 2010
Sizes and chamber data

<table>
<thead>
<tr>
<th>Chamber</th>
<th>Chamber depth</th>
<th>Volume</th>
<th>Filter area</th>
<th>Drying Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>mm</td>
<td>litre</td>
<td>m²</td>
<td>m²</td>
<td></td>
</tr>
<tr>
<td>Demo plant</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VPA 1030</td>
<td>32</td>
<td>20</td>
<td>1.3</td>
<td>0.65</td>
</tr>
<tr>
<td>VPA 1040</td>
<td>40</td>
<td>25</td>
<td>1.3</td>
<td>0.65</td>
</tr>
<tr>
<td>VPA 1530</td>
<td>32</td>
<td>55</td>
<td>3.4</td>
<td>1.7</td>
</tr>
<tr>
<td>VPA 1540</td>
<td>41</td>
<td>68</td>
<td>3.4</td>
<td>1.7</td>
</tr>
<tr>
<td>VPA 2040</td>
<td>40</td>
<td>165</td>
<td>7.8</td>
<td>3.9</td>
</tr>
<tr>
<td>VPA 2050</td>
<td>52</td>
<td>204</td>
<td>7.8</td>
<td>3.9</td>
</tr>
</tbody>
</table>

NEXT GENERATION WILL BE EVEN LARGER!

Per Tomani, Innventia
October 2010
Key numbers for the LignoBoost process

Lignin production:
- 175 – 295 kg lignin/ton BLS
- Average: 240 kg lignin/ton BLS

CO₂-consumption:
- 150 – 320 kg/tonne lignin
- Average: 220 kg/tonne lignin

Acid consumption (H₂SO₄ &/or spent acid):
- 120 – 255 kg/ton lignin
- Average: 175 kg/ton lignin
Na/S balance

- Very important to collect information about the existing Na/S balance!
 - How is spent acid used?
 - How much spent acid is handled and available for LignoBoost?
 - Today’s level of Recovery Boiler Dust purge?

- We will need to add at least some fresh H_2SO_4
Buy CO$_2$, get it “for free” from flue gases or from a ethanol production site?

Per Tomani, Innventia
October 2010

Reference: Henrik Wallmo, PhD Thesis
Chalmers University of Technology
Sweden
Possible pulp production increase
Flue gas limited recovery boiler, constant DS and air excess

Relative pulp production, %

Per Tomani, Innventia
October 2010
Energy situation in mill
Summary/Steam balance

Recovery boiler 15.2 GJ/ADT

<table>
<thead>
<tr>
<th>Process</th>
<th>GJ/ADT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Evaporation</td>
<td>5.1</td>
</tr>
<tr>
<td>Fibre line</td>
<td>4.9</td>
</tr>
<tr>
<td>Pulp drying</td>
<td>3.0</td>
</tr>
<tr>
<td>Others</td>
<td>1.0</td>
</tr>
<tr>
<td>Total need</td>
<td>14.0</td>
</tr>
</tbody>
</table>

Reference:
KAM, report A100, 2003
Energy situation in mill
Steam saving potential

<table>
<thead>
<tr>
<th>Process</th>
<th>Average</th>
<th>BAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fibre line</td>
<td>4,9</td>
<td>3,2</td>
</tr>
<tr>
<td>Evaporation</td>
<td>5,1</td>
<td>4,0</td>
</tr>
<tr>
<td>Pulp drying</td>
<td>3,0</td>
<td>2,2</td>
</tr>
<tr>
<td>Lime kiln</td>
<td>1,4</td>
<td>1,4</td>
</tr>
<tr>
<td>Others</td>
<td>1,0</td>
<td>0,0</td>
</tr>
<tr>
<td>Total</td>
<td>15,4</td>
<td>10,8</td>
</tr>
</tbody>
</table>

1. KAM, report A100, 2003
Adiabatic combustion temperature, C

Min. Temp.

Softwood, 80% DS

Softwood, 72% DS

Hardwood

About 25% of available lignin in BL

Extracted lignin, tonnes/ADt

Reference: Lennart Delin, AF Consult

Per Tomani, Innventia
October 2010
Impact of lignin extraction on black liquor properties and evaporation capacity

Black liquor properties

- The black liquor viscosity will be slightly lower with lignin extraction.
- Very small impact on the boiling point elevation (BPE) by lignin extraction.

Impact on evaporation capacity

- Most likely the evaporation plant capacity will remain or be slightly improved by the lignin extraction.
- The point of crystallization (risk for scaling) might change due to the changed inorganic composition.
- Increased evaporation demand from lignin wash water corresponds to 2 m³/ton lignin or 0,25 m³/ADt at 25% lignin removal rate.

Reference: Ali Moosavifar, PhD Thesis
Chalmers University of Technology
Sweden
Costs according to a R&D Programme

Cost for a LignoBoost plant producing 50 000 tonne lignin/year (7 t/h lignin plant). This lignin production is calculated as dry but produced as 65% DS lignin cakes.

Total investment cost: USD* 12-18 million

Operational cost: USD* 60-110 / tonne dry lignin
USD* 11.5 / MWh (+/- 30 %)

Reference: The FRAM2 R&D Programme, 2005-2008

*1 USD = 7 SEK

Per Tomani, Innventia
October 2010
Some experiences

- The LignoBoost process is connected in parallel with the recovery cycle and will not interfere with the "normal" pulp production if disturbances in LignoBoost.

- Possibilities to store the lignin product = Pulp Mill Energy Balance Optimisation

- First part of the LignoBoost-concept was in commercial operation 1994 to 2005 by Borregaard LignoTech in Bäckhammar Sweden. This results in a ash-rich lignin water slurry. Continuous operation with only one yearly maintenance stop scheduled together with the pulp mill. Production of lignin on a level of 6 000 tonnes/year. This means well-proven technology.

- The second part of the LignoBoost-concept, which results in a clean product & high dry solids, is tried by Innventia on a level of 4 000 tonnes/year in the demonstration plant in Bäckhammar.

- LignoBoost-concept does not include development of new equipment. Instead we use conventional equipment, put together in a new way for a new application.

- Key component (press filters) in the LignoBoost-concept is conventional technology, very well-proven equipment in the mineral industry. Fully automatic equipment. Very large sized filters in the mineral industry.

Per Tomani, Innventia
October 2010
Collection of data to see if LignoBoost fits in your pulp mill

- Screening of potential
 - Step 1: Laboratory scale trials at Innventia

Laboratory-scale equipment; ~10g lignin per filtration-batch.
Collection of data to see if LignoBoost fits in your pulp mill

- Screening of potential & collection of design data
 - Step 2: Pilot scale trials at your pulp mill

Pilot scale equipment; ~ 0.5 – 1 kg lignin per filtration-batch

Per Tomani, Innventia
October 2010
The LignoBoost Demo Plant

VPA 1040
24 chambers
1-1.2 tonnes lignin/h

Possible to test your black liquor, produce your lignin and verify design data in real scale

Per Tomani, Innventia
October 2010
Thank you for your attention!

Per Tomani, Innventia
October 2010