Comparison of brightening kinetics in the final hydrogen peroxide stage of \(\text{DE}_{\text{DP}} \text{DP} \) and \(\text{OQ(PO)} \text{DP} \) bleaching sequences

Comparação da cinética de branqueamento no estágio final de peróxido de hidrogênio das sequências de branqueamento \(\text{DE}_{\text{DP}} \text{DP} \) e \(\text{OQ(PO)} \text{DP} \)

1) CIEPQPF, Department of Chemical Engineering, University of Coimbra, 3030-790 Coimbra, Portugal
2) CICECO, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal

São Paulo, October 14th, 2008
Motivation & Objectives

- Why a final P stage is used instead of the conventional D stage in the ECF bleaching of eucalypt kraft pulps?

 DEDD versus DEDP

 - Lower brightness reversion
 - Higher pulp beatability
 - Better papermaking properties

 But DED ISO brightness > 87%
 If Target is 90±0.5%

- What is the effect of pulp bleaching history on the brightening performance of the final P stage?

Figure 1. Chemical charges needed to attain 90±0.5% ISO brightness versus D₄ pulp brightness. Carvalho et al. 2008. Tappi J. 7(8):8-13;
Figure 1. Intrinsic viscosity and brightness reversion (PC number).

Figure 3. Tensile index versus PFI revolutions.

Motivation & Objectives

- Understanding the effect of pulp bleaching history:
 - Comparison of the *brightening kinetics* in the final P stage of two different partially bleached industrial kraft pulps:

 \[\text{OQ(PO)D versus DE}_{\text{OPD}} \]

- Development of mathematical kinetic models – ongoing research

Figure 2. Pulp drainability (Schopper-Riegler method) versus PFI revolutions.

Carvalho et al. 2008. Tappi J. 7(8):8-13;
Intro: Bleaching Principles

- **Final Hydrogen Peroxide bleaching stage**
 - **Brightening reactions:**
 - Alkaline conditions: \(\text{HOOH} + \text{HO}^- \rightarrow \text{HO}^+ + \text{H}_2\text{O} \)
 - Brightening agent

 - Chromophoric type structures:
 - Lignin derived
 - ![Chemical structures](image)

 - Tubino and Filho 1998. O Papel LIX(2):44-54;

- **Final Hydrogen Peroxide bleaching stage**
 - **Decomposition reactions:**
 - *Base-catalyzed:* \(\text{HOOH} + \text{HO}^- \rightarrow \text{HO}^+ + \text{O}_2 + \text{H}_2\text{O} \) (pH > 11.6)
 - *Metal-catalyzed:* e.g., \(\text{HOOH} + \text{M} \rightarrow \text{M}^+ + \text{HO}^+ + \text{HO}^- \) – Transition metal
 - Transition metals: Mn, Fe, Cu

 - Many pathways proposed in the literature – complex phenomena!

 - **Avoid radicals generation – a must!**
 - Prevent loss of viscosity and yield!
Intro: Bleaching Principles

- Metals management
 - Pre-treatments: Acid wash – A stage (also \(D_{HT} \))
 - Less selective
 - Chelation – Q stage
 - Eventual Mg replenishment
 - Additives in the P stage
 (e.g. MgSO\(_4\), EDTA or DTPA)

Mn – the most detrimental metal

Mg – polysaccharides “protector” \(\Rightarrow \) role of Mg(OH)\(_2\)

Important parameter: \(D_{FT} \rightarrow 30 \) \(\Rightarrow \) ensure effective \(H_2O_2 \) bleaching \((T \leq 90^\circ C) \)

Devenyns et al. 1994. 3rd EWLP, Stockholm

Experimental

- Materials
 - Industrial samples of *Eucalyptus globulus* kraft pulps partially bleached with the sequences: \(DE_{OFD} \) and \(OQ(PO)D \)

- Methodology
 - Further washed in the laboratory

Preliminary study
 - Best stabilizing system to avoid hydrogen peroxide decomposition and preserve pulp quality?

Kinetic study
 - Chemicals consumption
 - Pulp intrinsic viscosity

Inti
Experimental

Bleaching conditions:

<table>
<thead>
<tr>
<th>Bleaching variable</th>
<th>Preliminary studies</th>
<th>Kinetic studies</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{H}_2\text{O}_2) (% odp)</td>
<td>DE(_{\text{ODP}}): 1.0</td>
<td>0.5 – 2.0</td>
</tr>
<tr>
<td>Na(_{2}\text{O}) (% odp)</td>
<td>0.60</td>
<td>0.8 – 0.9</td>
</tr>
<tr>
<td>DTPA (% odp)</td>
<td>0.05-0.20</td>
<td>0.05</td>
</tr>
<tr>
<td>EDTA (% odp)</td>
<td>0.05-0.20</td>
<td>--</td>
</tr>
<tr>
<td>Mg(_2\text{SO}_4) (% odp)</td>
<td>0.025-0.100</td>
<td>--</td>
</tr>
<tr>
<td>Temperature (°C)</td>
<td>70</td>
<td>70 – 90</td>
</tr>
<tr>
<td>Time (min)</td>
<td>30</td>
<td>0 – 180</td>
</tr>
<tr>
<td>Consistency (%)</td>
<td>10</td>
<td>10</td>
</tr>
</tbody>
</table>

Starting pulps:

- Reaction times of the kinetic studies: 1, 5, 15, 30, 60, 120, 180 min;
- 20 g od pulp in a water bath;
- All reagents were pre-heated to the desired temperature.

Results & Discussion

Preliminary study: Best stabilizing system to avoid hydrogen peroxide decomposition and preserve pulp quality?

<table>
<thead>
<tr>
<th>Stabilizer charge (% odp)</th>
<th>DE(_{\text{ODP}}) (1.0% odp (\text{H}_2\text{O}_2) charge)</th>
<th>OQ(PO)DP (0.5% odp (\text{H}_2\text{O}_2) charge)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mg(_2\text{SO}_4)</td>
<td>DTPA</td>
<td>EDTA</td>
</tr>
<tr>
<td>0.050</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>0.250</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>0.200</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>0.050</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>0.250</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>0.100</td>
<td>0.100</td>
<td>--</td>
</tr>
<tr>
<td>0.050</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>0.250</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>0.050</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>0.100</td>
<td>0.100</td>
<td>--</td>
</tr>
</tbody>
</table>
Results & Discussion

Metal contents

- DEPOD pulp has a higher content of Ca, Mg, and Mn than OQ(PO)D pulp.
- DTPA is very efficient in Mn removal.
- Fe is not equally removed in both pulps.

All Mg/Mn ratios higher than 30!
OQ(PO)DP pulps have higher Mg/Mn ratio → Higher bleachability of OQ(PO)D pulps?
Results & Discussion

- Brightening kinetics

 - Figure 1. ISO brightness gain kinetics in the final P stage of the sequences DEQPO DP and OQPO DP with 0.5% dwp H₂O₂ at 70 and 90°C.

 - OQ(P)O DP pulp has faster brightness gain (or evolution)
 - DEQPO DP pulp brightening at 90°C is limited by decomposition of H₂O₂ → Brightness ceiling

- H₂O₂ consumption kinetics

 - Figure 3. Hydrogen peroxide consumption kinetics in the final P stage of the sequences DEQPO DP and OQPO DP with 0.5% dwp H₂O₂ at 70 and 90°C.

 - Higher H₂O₂ consumption with the DEQPO DP
 - The OQPO DP pulp allows higher reaction times at 90°C → Continuous brightening
Results & Discussion

- **NaOH consumption kinetics**
 - Figure 5: Sodium hydroxide consumption kinetics in the final P stage of the sequences DE, DP and OQ/PO/DP with 0.5% edp H₂O₂ at 70 and 90°C.
 - Figure 6: Sodium hydroxide consumption kinetics in the final P stage of the sequences DE, DP and OQ/PO/DP with 2.0% edp H₂O₂ at 70 and 90°C.

- The OQ/PO/DP pulp has higher NaOH consumption.

Discussion

- Pulp bleachability comparison
 - Figure 7: Bleachability of the final P stage for the sequences DE, DP and OQ/PO/DP with 0.5% edp H₂O₂ at 70 and 90°C.
 - Figure 8: Bleachability of the final P stage for the sequences DE, DP and OQ/PO/DP with 2.0% edp H₂O₂ at 70 and 90°C.

- OQ/PO/DP pulp has higher bleachability than DE/DP pulp.
- The highest temperature positively affect OQ/PO/DP pulp bleachability for the highest charge.
Results & Discussion

Why such differences?

- $\Delta E_{0p}D$ pulp
 - Higher H_2O_2 consumption
 - Lower brightness gain

The higher bleachability of OQ(PO)D pulps may explain why

- Decomposition reactions are more significant

Further study

<table>
<thead>
<tr>
<th>Time (min)</th>
<th>H_2O_2 Consumption (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>40</td>
<td>60</td>
</tr>
<tr>
<td>60</td>
<td>100</td>
</tr>
</tbody>
</table>

Results & Discussion

Further understanding the pulp history effect on the brightening performance of H_2O_2

The role of quinones

These kind of chromophoric structures survive until the end of the bleaching sequence.

They negatively affect pulp bleachable in ClO$_2$ based ECF sequences.

Lach, W. Bleaching with H_2O_2 and ClO_2.

These structures are produced in D and O stages, but the D$_3$ stage raises dramatically the amount of quinones.

DE$_{0p}D$ vs. OQ(PO)D

Higher amount of quinoid chromophores in the DE$_{0p}D$ pulp is expected.
Conclusions

- The best stabilizing system in the final P stage was dependent on the pulp history:
 - DE₂₆D pulp: DTPA
 - OQ(PO)D pulp: DTPA+MgSO₄
- DTPA is very efficient in reduction hydrogen peroxide decomposition (Mn removal);
- OQ(PO)D pulps have lower Mn content and higher Mg/Mn, due to the Q stage;
- OQ(PO)D pulp has higher bleachability than DE₂₆D pulp;
- The efficiency of accelerating brightening reactions by raising the temperature to 90°C in the final P stage strongly depends on pulp history;
- The decomposition reactions are more significant with the DE₂₆D pulp - after 60 min at 90°C, peroxide is almost depleted and no further brightness increase is achieved;
- At 80°C, with the OQ(PO)D pulp, it is possible to reach a retention time of 180 min with a continuous brightening evolution;
- For the DE₂₆D pulp longer times than 60 min at 90°C are not advisable while for the OQ(PO)D pulp wider time and temperature ranges are possible.

Acknowledgments

- RAIZ – Instituto de Investigação da Floresta e do Papel, for the laboratorial assistance
- Grupo Portucel Soporcel and Celbi mill for supplying the pulps
- Fundação para a Ciência e Tecnologia for the PhD scholarship granted to Pedro Loureiro
Thank you for your attention!

Obrigado pela vossa atenção!