

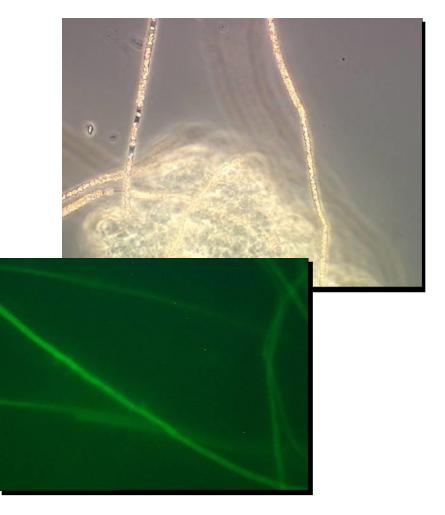
Impact of Volatile Organic Acids on Activated Sludge Microbiology

Michael Paice

8th IWA Symposium on Forest Industry Wastewaters Vitoria, Brazil April, 2006

Co-authors

Carl Pelletier, now with Nexia Biotech, Montreal Sophie Deschênes, FF Soucy, Québec Mary Ann Fitzsimmons, Paprican, Montreal


Impact of Septic Compounds on Filament & Floc Formation

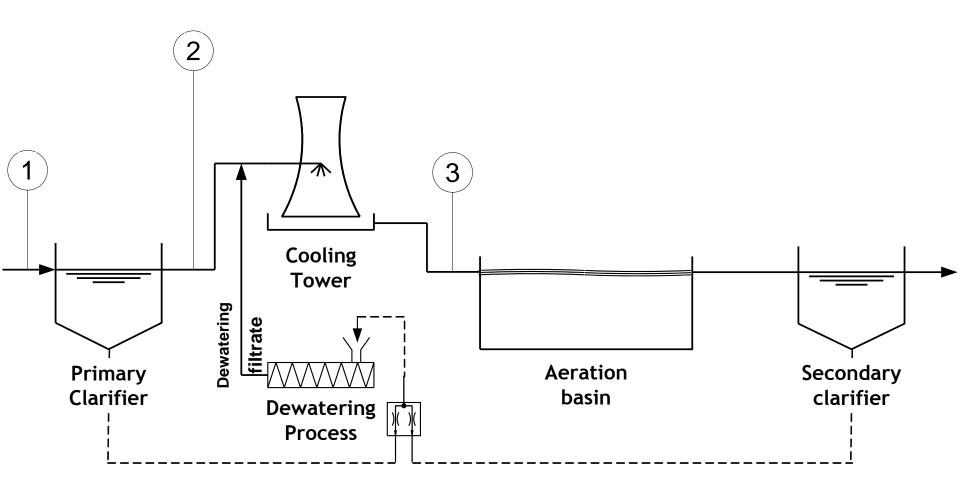
- Volatile organic acids (VOA)
 - Acetic : CH₃COOH
 - Propionic : CH_3CH_2COOH
 - Butyric : $CH_3CH_2CH_2COOH$
- Reduced sulfur compounds
 - Sulfide : S²⁻
 - Thiosulfate : $S_2O_3^{2-}$
- Cause primary clarifier odour and activated sludge filamentous bulking

Type 021N / Thiothrix Bulking

- Type 021N is a common bulking filament
- Identified by:
 - Microscopy
 - Fluorescent in-situ hybridization (FISH)
- Now looking at quantitative polymerase chain reaction (qPCR)

What Triggers Type 021N / Thiothrix Bulking?

- Low F/M ratio
 - (for 021N only)
- Low dissolved oxygen < 2.0 mg/L
- Nutrient deficiency (nitrogen & phosphorous)
- Septicity
 - Organic acids
 - Reduced sulfur compounds
 - Others readily biodegradable substrate
 - Alcohols, amino acids with sulfur, glucose



What Triggers Type 021N / Thiothrix Bulking?

- Nutrient deficiency
 - Nitrogen
 - < 1.0 mg/L of TIN
- Septicity
 - Organic acids (acetic, propionic, butyric)
 - VOA > 100 to 200 mg/L
 - Reduced sulfur compounds (TRS)
 - Hydrogen sulfide > 1 to 3 mg/L
 - Thiosulfate > ? mg/L (021N only)

Newsprint Mill14-Week Sampling Campaign

This mill has experienced chronic sludge bulking problems (Type 021N)

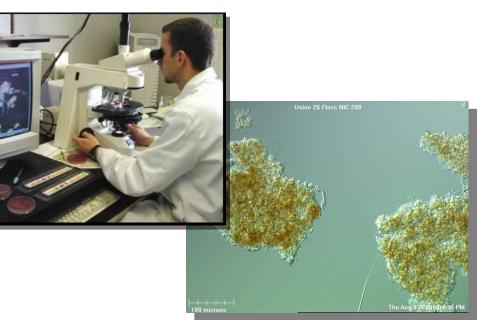
Measured Septic Compounds at Sampling Sites 1, 2 & 3 (average of 14 samples)

	VOA _{total} (mg/L)	Sulfide (mg/L)	Thiosulfate (mg/L)
1-Prim. Clarifier In	77	0.5	1.4
2-Prim. Clarifier Out	140	0.8	2.5
3-After Cooling Tower (pressate included)	146	0.3	1.2

Correlation Between Filaments Bacteria Counts and Septic Compounds in the Effluent

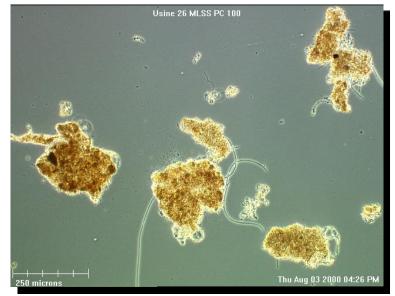
	Filaments [¤]	VOA_{t}^*	Sulfide *	Thiosulfate*
n	14	14	11	14
Average	3.4E+06	146	0.3	1.2
Std. Dev.	9.5E+05	32	0.2	0.9
Pearson r	-	0.43	0.40	0.23
() Pearson r significance test passed			*mg/L	[*] int. / g MLSS



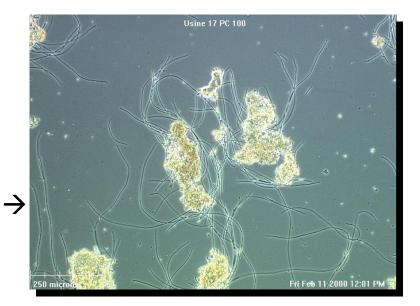

VOAs Entering Aeration Basin: Correlation with Filament Abundance (average of 14 samples)

Acid	Average*	%	r Pearson		
Formic	5	3.7	0.12		
Acetic	119	82.1	0.39		
Propionic	8.6	5.9	(0.59)		
Butyric	12.1	8.3	0.35		
Total	146	100.0	0.43		
* mg/L	()Pearson r sign	() Pearson r significance test passed			

Measuring Floc Size Distribution



Viewing Toxic Effects


< 50 µm, 50 – 150 µm, 150 – 500 µm

150 – 500 μm, 50 – 150 μm, < 50 μm

50 – 150 μm, < 50 μm, 150 – 500 μm

Correlation of Septic Compounds with Floc Size Distribution (14 samples)

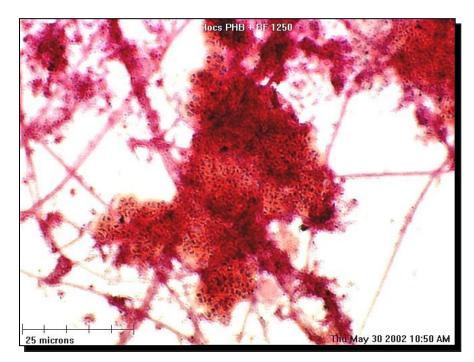
	Formic acid	Acetic acid	Propionic acid	Butyric acid	Total sulfur	Thiosulfate
< 50 µm	0.03	0.23	(0.57)	0.24	-0.30	-0.30
50-149 µm	-0.26	0.10	-0.01	0.16	0.13	0.16
150-500 µm	0.22	-0.36	(-0.56)	-0.42	0.23	0.12
> 500 µm	0.38	0.25	0.37	0.22	0.12	-0.12

() = Pearson r significance test passed (tr > t0.05)

Correlation of Floc Size Distribution with Confounding Factors

	TIN ^{1*¤}	BOD : N	O-PO ₄ ^{2*¤}	BOD : P	F/M Ratio ³	D.O. ^{4¤}
< 50 µm	-0.26	0.37	-0.40	0.08	-0.14	-0.08
50-149 µm	0.30	-0.20	0.30	-0.21	0.05	0.03
150-500 µm	-0.05	-0.13	0.07	0.19	0.04	0.07
> 500 µm	-0.45	0.10	-0.32	-0.19	0.32	-0.21
¹ Total inorgan	ic nitrogen	³ kg BOD / k	g MLSS.day	() Pearson	r significance te	est passed
² Orthophosph	ate	⁴ Dissolved of	oxygen	* Residual	¤ mg/L	

Propionic Acid (PA) Toxicity Impact


- Average PA concentration in primary clarified effluent was 8.6 mg/L for 14 samples collected
- Literature indicates toxic effect appears between 5 to 10 mg/L

- PA interferes with biosynthesis and accumulation of poly-ß-hydroxybutyrate (PHB) in some species of flocculating microorganisms
- 2. PA also interferes with metabolic activity of biomass by reducing respiration rate

Propionic Acid Inhibits PHB Storage

- Major carbon storage mechanism
- Results in competitive disadvantage of flocs during nutrient deprivation

Sudan Black / Safranin O stain

PA Reduces Respiration Rate of Flocculating Bacteria

- BOD and nutrient uptake by flocs decreases
- Flocs grow more slowly
- More nutrients and BOD become available for filamentous bacteria (competitive advantage)
- Filamentous bacteria progressively out-grow flocculating bacteria, SVI increases

Summary

- Correlation between propionic acid and filamentous bulking is due to floc inhibition
- Inhibition of floc-forming bacteria allows filaments such as Type 021N to out-compete flocs, causing bulking
- Need to prevent propionic acid formation in primary clarifier and during sludge pressing

How to Minimize Propionic Acid Formation?

- Prevent seeding of mill streams and clarifiers
 - Biocide programs
 - Minimize phosphate availability
- Keep redox potential high in clarifiers
 - Pure oxygen or peroxide
- Perform pH shock
 - Must be sufficient to inhibit growth

Microorganisms pH Range

Bacteria Type

Operational pH Range

Sulfate Reducing Bacteria Desulfobulbus, Desulfovibrio, etc.	5.5 - 9.0
Fermentative Bacteria	4.5 - 9.5
Clostridium spp. Propionibacterium spp. Coliforms	4.5 - 8.0
Klebsiella spp, E. coli, Enterobacter spp.	4.3 - 0.0

Obrigado! Thank you!

Non Charles in

