ESTUDO DA INTERACÇÃO TINTA-PAPEL EM IMPRESSÃO INKJET

A. P. Mendes de Sousa¹, J. L. Amaral¹, N. J. Oliveira², Cidália Torre³, Dmitry Evtuguin⁴, Paulo Ferreira⁴, Isabel Moutinho⁴, Marco Campos⁴, Pedro Oliveira⁴, Ana Maria Ramos⁴, Sónia Sousa⁵, Rogério Simões⁶, J. Lopes Velho⁷, Natércia Santos⁷

ABSTRACT

This work objective was to study the ink-paper interaction during inkjet printing and its influence upon the perceptional printing quality.

We focused upon the relations between intrinsic paper properties (micro topography and chemical surface properties) with the dynamics of ink penetration and spreading.

Prototype paper samples produced with different surface treatments made it possible to study the impact of these treatments on ink – paper interactions.

In order to define and select the technical parameters of printing quality, a special printing target was used with a selected group of five different inkjet market papers, covering a wide range of paper type and quality.

To quantify the parameters associated with printed lines and points a portable equipment as been selected (PIAS - QEA) and to check for color reproduction and optical density a handheld spectrometer (Avamouse) was used. The paper samples had been tested for surface micro topography using an optical profilometer (Altisurf 500) and the chemical surface properties with the specific equipment OCAH200 from DataPhysics.

The subjective panel results of the five market paper samples, printed with two photo targets, allowed us to identify the technical parameters of print quality with a major contribution to the perceptional evaluation.

All the evaluation process using the printing technical parameters as well as the micro topography and chemical surface tests, was applied to a group with a total of 31 paper samples, containing three sets of papers, coated papers, uncoated papers and prototype paper samples produced with special surface treatments.

A detailed analysis to the uncoated paper samples set, allowed us to define a smaller group of printing technical parameters to be used at mill scale, with assigned values, to classify the samples within the very good, good and acceptable range.

Multivariable correlation studies allowed us also, to identify some of the paper intrinsic characteristics (micro topographic and chemical surface) with influence in the printing quality technical parameters. These results will be explored in future work using specific coating equipment, delivering special treatments to the paper surface.

Palavras – Chave
Qualidade de impressão, Inkjet, microtopografia, propriedades químicas de superfície, reprodução da cor.

INTRODUÇÃO

A pasta branca de Eucalyptus globulus é reconhecida como a melhor matéria-prima disponível para a produção de papéis de escritório não revestidos com elevada aptidão à impressão, dadas as características físicas e químicas únicas das suas fibras.

A qualidade da impressão jacto tinta é determinada pelas interações entre a tinta e a superfície do papel, sendo fortemente influenciada pelas suas propriedades químicas e estruturais do papel.

Crescentes exigências na qualidade da impressão colocam o desafio de encontrar novas abordagens para a modificação de características de superfície do papel que permitam um melhor controle do espalhamento e da penetração da tinta no processo de impressão.

Colagem superficial, pigmentação e revestimentos têm vindo a ser usados para melhorar o desempenho dos papéis de impressão.

O projecto foi concebido com o objectivo de aprofundar a compreensão dos fenómenos de interacção entre as tintas e a superfície do papel e da influência das características físicas e químicas desta superfície.

O projecto foi desenvolvido em parceria com as Universidades de Aveiro, Beira Interior e Coimbra

MATERIAIS E MÉTODOS

Amostras
Na primeira fase do projecto foram consideradas apenas 5 amostras de papéis disponíveis no mercado destinadas à impressão inkjet cobrindo todo o espectro da gama de qualidade. Foram selecionados dois papéis do grupo Portucel Soporcel, Navigator (80 g/m²) e Pioneer (80 g/m²), um papel reciclado Cória 2000 (80 g/m²) e no topo de gama, um papel revestido - HP Premium Heavyweight Paper Matt Inkjet Two Sided (135 g/m²) e um papel foto - HP Everyday Photo Paper, Semi Glossy One Sided Inkjet (170 g/m²).

Na segunda fase do projecto foram contempladas amostras de papéis de mercado recolhidas em estudos de benchmarking, papéis especiais para documentos, papéis protótipos produzidos à escala piloto e à escala laboratorial com tratamentos / deposições de formulações específicas. Foram selecionadas mais 26 amostras perfazendo um total de 31 amostras no final.

Métodos
No âmbito do projecto foi necessário desenvolver metodologias apropriadas de acordo com os objectivos pretendidos. Deu-se início à utilização de novos equipamentos / métodos de ensaio, nomeadamente a caracterização da microtopografia 3D da superfície dos papéis, tendo sido adquirido no decurso do projecto equipamento específico para o efeito. Foram ainda adaptados alguns dos métodos já em uso.

Foram também definidos os parâmetros técnicos de qualidade de impressão, o sistema de avaliação por painel da qualidade de impressão, as características intrínsecas do papel, englobando parâmetros físicos associados à caracterização da microtopografia 3D da superfície do papel e ainda as características químicas de superfície.

Numa primeira tentativa, foram analisadas as correlações entre os resultados da avaliação por painel de duas manchas fotográficas impressas e os parâmetros técnicos de qualidade de impressão, bem como entre estes e as características intrínsecas do papel.

Um número mais reduzido de parâmetros significativos ficou definido, para aplicação a um conjunto mais alargado de 31 amostras no final.

Os estudos finais permitiram definir alguns dos contributos das características intrínsecas do papel nos parâmetros técnicos de qualidade de impressão. As correlações foram estabelecidas para o universo global das 31 amostras, e para 3 universos mais reduzidos de papéis não revestidos fabris (11), papéis revestidos (6) e papéis protótipos não revestidos (15).

Painel de avaliação subjetiva
O painel de avaliação foi constituído por 6 grupos de 10 pessoas cada, cobrindo um universo alargado de utilizadores de papéis para impressão inkjet. As cinco amostras de cada uma das fotos foram analisadas em simultâneo por cada avaliador, estando estas distribuídas sobre uma superfície, podendo ser deslocadas e posicionadas por preferência. A iluminação da exposição era solar de interior (proximidade de janelas para o exterior). A classificação numérica obrigatória, foi feita sem escala definida, à consideração do avaliador. Os resultados foram normalizados pela média das 5 avaliações individuais.
Parâmetros técnicos de avaliação da qualidade de impressão

Foi necessário no decurso do projeto, definir uma máscara de impressão apropriada para a determinação dos parâmetros técnicos da qualidade de impressão (Fig.1). A máscara desenvolvida (*IJTarget 06*) combinou elementos para a avaliação da capacidade de reprodução da cor, da qualidade do ponto e da linha.

![Figura 1 – Elementos para avaliação da capacidade de reprodução da cor, da qualidade do ponto e da linha](image)

As impressões das máscaras para controlo dos parâmetros técnicos de Qualidade de Impressão, bem como das fotos para Avaliação por Painel, foram realizadas na impressora HP Deskjet 5652. Foram utilizados cartuchos de tintas com as referências 56 – Preto (pigmento) e 57 – CMY (corantes).

De modo a uniformizar as condições de impressão foram mantidas constantes para todos os papéis, as configurações da impressora. O tipo de papel foi definido para todas as amostras como “Papel Comum”, a qualidade de impressão foi pré definida para “melhor” o que equivale a resoluções de 600dpi quer para o preto quer para as cores.

QEA – PIAS

Para a quantificação de parâmetros de qualidade da reprodução de linhas e pontos impressos, existem no mercado várias soluções, algumas baseadas em equipamentos portáteis de análise de imagem.

O equipamento portátil PIAS (Personal Image Analysis System) da QEA (Quality Engineering Association – Burlington, MA USA, www.qea.com) possui uma câmera digital CCD a cores com uma abertura de 2,4 x 2,4 mm e resolução de 5 micra por pixel. O software acoplado de análise de imagem está especialmente vocacionado para a análise da qualidade de impressão sendo possível quantificar uma série de parâmetros associados à análise da qualidade de: pontos, linhas, áreas (manchas impressas), texto, reprodução de tons, etc., entre outros.

No decurso do projecto fizeram-se abordagens exaustivas de leitura de vários parâmetros tendo sido seleccionados apenas os parâmetros associados à qualidade da linha e do ponto.

A quantificação da qualidade da linha foi feita a partir da determinação dos parâmetros “raggedness” (rugosidade da linha) e “blurriness” (‘print sharpness’, contornos da linha na transição entre a linha e o fundo), de acordo com a norma ISO 13660/2001, na linha negra horizontal com 0,35 mm de largura.

Foi ainda incluído o parâmetro “Inter color bleed”, quantificado a partir da largura da linha preta horizontal (0,5 mm) sobre fundo amarello e da largura da linha amarela horizontal sobre fundo preto.

A escolha da linha horizontal (impressa no sentido da direcção transversal do papel), amplia os efeitos de espalhamento da tinta na direcção longitudinal das fibras à superfície do papel.

Em relação à quantificação da qualidade do ponto foi feita a determinação da “circularidade” dos pontos “preto” e “magenta” com 400 micra de diâmetro.
AVAMOUSE

Para avaliar a capacidade de reprodução de cores e a densidade óptica de impressão existem igualmente ao mercado várias soluções que foram usadas no decorrer do projecto. Optou-se por considerar apenas os resultados do equipamento portátil AvaMouse da empresa Avantes (www.avantes.com).

O AvaMouse é um espectrofotómetro de reflexão portátil que pode facilmente ser ligado a um computador através da interface USB. Tem funções de colorímetro e densitómetro usando dados espectrais verdadeiros (380nm a 750 nm com intervalos de 5 nm) obtidos a partir de um iluminante D65 de luz diurna de Xénon com 35 flashes por segundo. A geometria de medição é de 45°/0° com observador de 2°.

Os valores colorimétricos são gerados de acordo com os vários sistemas de definição de cor e os valores de densidade de impressão de acordo com uma série de definições de “status”.

Para o projecto, adoptaram-se como referência de cor os parâmetros L*a*b* do Espaço de Cor CIE e para as densidades de impressão o “status” I com 5 nm de abertura de banda espectral nos comprimentos de onda do azul (430 ± 5 nm), verde (535 ± 5 nm) e vermelho (625 ± 5 nm).

Para a avaliação da capacidade de cor foi utilizado o conceito de área gamut, resultante do cálculo da área do hexágono irregular resultante da representação geométrica no espaço de cor CIE L*a*b* de 6 pontos correspondentes às projeções no plano das coordenadas a* e b* das 3 cores primárias; ciano (Cyan), Magenta e amarelo (Yellow), bem como das 3 complementares azul (Blue), verde (Green) e vermelho (Red).

Figura 2 – Definição de área gamut para avaliação da capacidade de reprodução da cor

Ensaios de caracterização da superfície do papel

PERFILOMETRIA 3D

Com a aquisição do perfilómetro óptico Altisurf 500 e o respectivo software Papermaps v.4, foram desenvolvidas metodologias de caracterização da microtopografia 3D (lisura) e da microporosidade dos papéis para impressão. As amostras foram analisadas com uma resolução no plano (x,y) de 2 μm e de cerca de 10 nm no eixo dos Z. Foram analisadas por cada amostra cerca de cinco porções de 4,8x4,8 mm.

Da enorme panóplia de parâmetros perfilométricos gerados pelo software e após estudos de representatividade estatística, intracorrelação (redundância) e significado físico, foi adoptado um reduzido conjunto de parâmetros.

Relativamente a um plano de referência para o universo de resultados de alturas (eixo Z) de todos os pontos, foram selecionados os seguintes parâmetros microtopográficos de amplitude, Sa (rugosidade média aritmética), Sp (altura do pico mais alto ao plano de referência), Sv (altura do poro mais profundo ao plano de referência), Ssk (skewness da distribuição de
alturas, > 0 planalto com picos; < 0 planalto com poros finos e profundos) e o Sku (kurtosis da distribuição de alturas, > 3 superfícies com picos altos ou poros profundos; < 3 superfícies com ondulações suaves, = 3 curva normal de distribuição).

Foram ainda considerados os parâmetros espaciais, Sds (densidade de picos na superfície pks/mm²) e Str (rádio da textura da superfície, = 0 anisotrópica, = 1 isotrópica) e o parâmetro híbrido Sdr (rádio % da área interfacial criada em relação ao plano de projecção, = 0 para superfície plana).

Em relação aos parâmetros de microporosidade da superfície do papel apenas foram seleccionados para os poros (cavidades abaixo do Sv no plano de referência) os valores equivalentes do diâmetro, do volume e o rádio (mm³/mm²) do volume equivalente por mm² de superfície.

QUÍMICA de SUPERFÍCIE

As características químicas de superfície (ângulos de contacto e energias de superfície (Fig.3)) foram determinadas com o sistema de análise superficial OCAH200 da DataPhysics.

![Figura 3 - Definição de ângulo de contacto](image)

No estudo foram usados os parâmetros ângulo de contacto (estático) com H₂O, o mesmo valor corregido com informação da rugosidade superficial (Sdr) e as energias de superfície (mN/m) total e as suas componentes dispersiva e polar.

RESULTADOS E DISCUSSÃO

Na primeira fase do projecto foram caracterizadas 5 amostras de papéis disponíveis no mercado destinadas a impressão *inkjet* através da avaliação subjectiva por painel das duas manchas fotográficas impressas e os parâmetros técnicos de qualidade de impressão.

Da análise multivariável (PCA) a todos os parâmetros técnicos de qualidade de impressão e da correlação (PLS) destes com os resultados da avaliação do painel resultou um modelo de avaliação global da qualidade de impressão percepcionada com base num número mais reduzido dos parâmetros técnicos mais significativos.

<table>
<thead>
<tr>
<th>Máscara</th>
<th>QEA - PIAS</th>
<th>Densidade Óptica - AvaMouse</th>
<th>AREA GAMUT</th>
<th>AVAUALIACAO</th>
<th>AVALIAÇÃO GLOBAL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Linha Horiz.</td>
<td>Predo</td>
<td>Majorita</td>
<td>P</td>
<td>M</td>
</tr>
<tr>
<td>A</td>
<td>28.6</td>
<td>42.2</td>
<td>39.5</td>
<td>0.6</td>
<td>49.4</td>
</tr>
<tr>
<td>B</td>
<td>100.0</td>
<td>47.9</td>
<td>48.7</td>
<td>63.2</td>
<td>34.4</td>
</tr>
<tr>
<td>C</td>
<td>37.4</td>
<td>27.8</td>
<td>40.8</td>
<td>57.7</td>
<td>67.2</td>
</tr>
<tr>
<td>D</td>
<td>57.8</td>
<td>105.0</td>
<td>105.0</td>
<td>71.0</td>
<td>71.7</td>
</tr>
<tr>
<td>E</td>
<td>54.1</td>
<td>59.7</td>
<td>89.7</td>
<td>75.5</td>
<td>71.0</td>
</tr>
</tbody>
</table>

Tabela 1 – Parâmetros técnicos e avaliações dos 5 papéis base

O gráfico da figura seguinte dá conta do contributo relativo de cada parâmetro técnico no modelo de avaliação global da qualidade de impressão percecionada.
Figura 4 – Contributo relativo dos parâmetros técnicos no modelo de avaliação global

A adaptação do modelo aos resultados da classificação pelo painel pode ser confirmada pela comparação junta.

Figura 5 – Comparação dos resultados do modelo e do painel

Um número mais reduzido de parâmetros significativos ficou definido, para aplicação a um conjunto mais alargado de um total de 31 amostras na segunda fase do projecto. Estas foram também sujeitas à determinação das características intrínsecas do papel tanto microtopográficas quanto químicas.

Procedeu-se depois a estudos de correlação multivariável entre os parâmetros técnicos de qualidade de impressão e as características intrínsecas da superfície do papel. As correlações foram estabelecidas para o universo global das 31 amostras, e para 3 universos mais reduzidos de papéis não revestidos fabris (11), papéis revestidos (6) e papéis protótipos não revestidos (15).

Tabela 2 – Papéis comerciais não revestidos. Correlações entre parâmetros técnicos e propriedades intrínsecas da superfície do papel
Para os papéis comerciais não revestidos destacam-se as seguintes relações:
- densidade óptica do preto;
 i) influência negativa do “skewness” da superfície (Ssk <0; planalto com poros finos e
 profundos > maior DO Bk)
 ii) influência positiva do ângulo de contacto e da energia dispersiva de superfície, negativa
 da componente polar.
- densidade óptica do magenta;
 i) influência negativa do “skewness” da superfície e positiva da “kurtosis” (Sku >3 super-
 fícies com picos altos ou poros profundos > melhora a DO magenta).
 ii) reduzida influência dos parâmetros químicos – ângulo de contacto correlaciona nega-
 tivamente.
- área gamut;
 i) influência negativa do “skewness” da superfície e positiva da “kurtosis”.
 ii) ângulo de contacto correlaciona positivamente, componente polar da energia de su-
 perfície.
- qualidade da linha;
 i) a profundidade dos picos prejudica a qualidade da linha.
 ii) ângulos de contacto mais elevados prejudicam a qualidade relativamente a “blurr” e
 “intercolour bleeding”.

CONCLUSÕES

Foi possível identificar os parâmetros técnicos da Qualidade de Impressão, com maior
contributo para a Qualidade Percepcionada (avaliação através de painel subjetivo). Ressaltam
os parâmetros associados à capacidade de reprodução da cor.

Conseguiram-se identificar algumas das características intrínsecas da superfície do papel
(microtopográficas e químicas) com maior influência nos parâmetros técnicos da Qualidade de
Impressão. O “skewness” distingue dois tipos de superfície que apresentam diferentes comporta-
tamentos na interacção com as tintas e na qualidade final de impressão.

As características químicas, nomeadamente os ângulos de contacto com a água, influen-
ciam de forma diferente as densidades ópticas do preto e magenta (diferentes tensões superfi-
ciais das tintas).
- Para o preto, a contenção da penetração parece ser determinante; para o magenta,
 o trabalho de adesão terá influência significativa.
- Existirá um valor óptimo do ângulo de contacto, mas que depende das características
 físicas da superfície e das tintas.

A chave para um a boa densidade óptica do magenta (tintas com estas características)
decorre de uma rápida e boa adesão da tinta numa “camada” restrita e próxima da superfície,
sem perda de eficácia por penetração no interior dos elementos constituintes desta camada.