Serragem de madeira ao forno de cal: uma opçao para economia de energia

MFN -0864 N CHAMADA:

TITULO: Serragem de madeira ao forno de cal: uma opçao para

economia de energia

AUTOR (ES): BUSNARDO, C.A. VARANTE, P.E.D. BARRETO N., F.R. LUDERS,

W.E.RAFIN, A.L.PUIG, F.FOELKEL, C.E.B.

EDICAO:

IDIOMA: português

ASSUNTO:

TIPO: Congresso

EVENTO: Congresso Anual da ABCP, 13

PROMOTOR: ABTCP

CIDADE: São Paulo DATA: 24-28.11.1980

IMPRENTA: Sao Paulo, 1980, ABTCP

PAG/VOLUME: p.225-237,

FONTE: Congresso Anual da ABCP, 13, 1980, São Paulo,

p.225-237

AUTOR ENTIDADE:

DESCRITOR:

RESUMO:

SERRAGEM DE MADEIRA AO FORNO DE CAL: UMA OPÇÃO PARA ECONOMIA DE ENERGIA

CARLOS A. BUSNARDO
PAULO E.D. VARANTE
FLORIANO R. BARRETO NETO
WILSON E. LUDERS
ANTONIO L. RAFFIN
FLOREAL PUIG
CELSO E.B. FOELKEL
Riocell

Sinopse

Tanto os ensaios laboratoriais como os industriais revelaram o largo potencial existente para o uso da serragem de madeira como combustivel complementar no forno de cal. As adições de serragem mostraram, como efeito mais evidente, uma economia significativa e importante de óleo combustivel, sem que houvessem ocorrido problemas operacionais, ambientais ou de qualidade de cal durante o periodo e ensaio industrial.

INTRODUÇÃO

Com o "apertar do cinto" em termos de economia de energia fóssil em todas as atividades que dependem dela, a busca de novas alternativas passou a ser um exercicio diário no trabalho dos técnicos de todos os setores, e também no de produção de celulose e papel. Sendo essa atividade de conversão, uma das mais ligadas à geração e utilização de biomassa lenhosa, pois é a madeira ou outra fibra vegetal qualquer a sua principal matéria-prima, certamente que algumas das perdas tradicionais no preparo e manuseio da mesma passariam a interessar como fonte de combustivel.

A politica energética brasileira

tem-se direcionado na análise de fontes alternativas de energia para substituição gradual do óleo fóssil. As principais sugestões são para se incrementar o uso do carvão mineral, da energia nuclear e hidroelétrica, do álcool e da madeira e correlatos.

Depois de representar a principal fonte de energia para o consumo do homem, durante milênios, a madeira passa a ter uma nova chance, com a volta à consideração da mesma, como uma das principais alternativas brasileiras para a solução do problema energético.

Fábricas de celulose consomem enormes quantidades do produto florestal para suas atividades de conversão. Como em todo processo, existem perdas de madeira no preparo e manuseio do material: essas perdas ocorrem no campo, no transporte e na preparação da madeira, quando essa é transformada em cavacos. Nessa última operação, onde as toras de madeira são fragmentadas em cavacos, que e a forma da madeira necessária para sofrer a deslignificação por processos químicos, costuma-se formar quantidade variavel de serragem.

A serragem formada na picagem da madeira é inevitável, pelas próprias caracteristicas da operação. O que se pode conseguir é reduzir o teor de serragem formado, controlando-se as principais variáveis que colaboram para sua maior ou menor formação. Dentre essas variáveis podem-se citar: teor de umidade da madeira, diâmetro das toras, afiação e regulagem das facas do picador, estado de deterioração da madeira, espécies de madeira, etc.

A serragem é indesejável prosseguir junto aos cavacos para o cozimento, pois além de consumir maior quantidade de reagentes químicos no mesmo, dando como conseqüência menores rendimentos e polpas de piores propriedades físico-mecânicas, ela também traz problemas operacionais em digestores continuos.

Dessa forma, costuma-se classificar os cavacos, removendo-se e descartando-se os chamados "finos" ou serragem. A remoção dessa serragem pelos meios disponiveis não é, entretanto, total. Como os cavacos são úmidos, uma porção apreciavel de serragem fina ainda permanece aderida aos cavacos, após a peneiragem.

Em geral, durante a picagem da madeira, costuma-se formar de 1 a 3% de serragem sobre o peso da madeira ingressante ao processo. Em uma condição operacional regular, cerca de 2% de serragem são continuamente retirados pelas penei ras classificatórias. Transformandose em quantidades, para uma fábrica de 800 toneladas/dia de celulose de eucalipto, geram-se e separam-se cerca de 30 toneladas/dia de serragem. Essa serragem constitui-se, hoje, em uma das principais perdas do processo. Em termos volumétricos, 30 toneladas de serragem seca equivalem a cerca de 100 metros cúbicos estéreos de madeira. Os usos dados à serragem separada são pouco nobres. Em geral, ela é simplesmente jogada fora, vendida a preço insignificante, ou transformada em pasta mecano-quimica.

Quando a crise energética começou, as atenções voltaram-se para a serragem. As idéias surgidas eram sempre no sentido de se compactá-la em briquetes ou péletes e se comercializá-la como combustivel lenhoso. Os problemas encontrados eram o preço para uma instalação desse tipo e a propria quantidade de serragem, que era pequena para justificar um investimento e um dimensionamento especial de uma miniplanta de briquetamento ou pelotização. Além disso, as unidades de prensagem da serragem exigem insumos, inclusive relativamente alta demanda de vapor. Por outro lado, vender a serragem como tal, encontra o inconveniente de ser a serragem muito volumosa, onerando o custo de transporte.

A unica solução para a serragem como energia deveria ser encontrada portanto internamente à fábrica. Em 1979, MERLIN relatou uma experiência promissora realizada nas Indústrias Klabin do Paraná de Celulose, onde se usou casca de madeira como combustivel auxiliar em forno de cal. Embora com algumas dificuldades operacionais, o autor conclui, que a substituição parcial do óleo combustivel ao forno de cal por casca era viável, e isso não ocasionava perturbações maiores à produção normal da fábrica.

A partir dessas boas tentativas, resolveu-se que talvez a solução para a serragem fosse a queima em forno de cal, atuando como um combustivel complementar. Dessa forma, decidiu-se pesquisar o assunto, tanto laboratorial como operacionalmente, visando verificar a viabilidade

técnica do uso da serragem do eucalipto para queima em forno de cal. Lembramos que o setor de caustificação/forno de cal é uma unidade padrão em modernas fábricas de celulose kraft, sendo portanto a presente experiência aplicável a todos os que dispuserem de serragem abundante e desse setor industrial em seu processo.

OBJETIVOS

A Riocell - Rio grande Cia de Celulose do Sul é uma fábrica de celulose de fibra curta, que utiliza o processo kraft para deslignificação da madeira. Esse processo tem como um dos principais consumidores de combustivel o forno de cal, no setor de recuperação do álcali. A função do forno de cal é converter o carbonato de cálcio (CaCO3), formado no setor de caustificação do licor verde, novamente em hidróxido de cálcio, Ca (OH) 2, que é usado na regeneração de um dos agentes ativos do licor de cozimento, que é o hidróxido de sódio (NaOH).

O presente estudo visa analisar uma forma de se reduzir o consumo de óleo combustivel no forno de cal, substituindo-o parcialmente por serragem de madeira de eucalipto.

METODOLOGIA E RESULTADOS

Para a avaliação do desempenho e da potencialidade desse combustivel auxiliar, procederam-se experiências no laboratório e no forno de cal, sendo que os dados obtidos nas experiências foram relacionados através de balanços térmicos e de massa.

1ª FASE: EXPERIÊNCIAS EM LABORATÓRIO PARA VERIFICAR O POTENCIAL DA SERRAGEM

Inicialmente, desenvolveram-se pesquisas em laboratório, procedendo-se à calcinação da lama de cal em mufla, para se avaliar a influência da presença de serragem na lama, quando realizada a queima. Objetivava-se verificar se a combustão era total, se permaneceriam pontos de carvão junto à cal, se a cal tinha sua caracteristica alterada, etc.

Uma série de dados passarão a ser a seguir discutidos, principalmente quanto às qualidades da cal e balancos materiais e térmicos do sistema. Resta mencionar o fato, que frente ao alto reciclo a que é submetido o efluente do sistema de caustificação/forno de cal, a lama e a cal da Riocell no momento de realização dos testes, estavam relativamente ricas em inertes e a cal final apresentava baixo teor de cal útil.

O objetivo inicial dos testes em laboratorio era que se obtivesse uma economia de cerca de 5% no consumo de óleo combustivel no forno. Decidiu-se então, grosseiramente, se estimar a dosagem de serragem a se adicionar junto à lama de cal.

A) Dados diários para cálculos:

- Vazão média de lama aos filtros: 470 1/min
- Densidade da lama: 1,31 kg/l
- % sólidos na lama: 38,5%

B) Lama seca ao filtro e por extensão ao forno de cal

470
$$\frac{11 \text{tros}}{\text{minuto}} \times 1.31 \frac{\text{toneledes}}{1000 \text{ litros}} \times 0.365 = 0.237 \text{ t/min}$$

$$0.237 \frac{\text{t}}{\text{min}} \times 50 \frac{\text{min}}{\text{hora}} \times \frac{24 \text{ horas}}{\text{dia}} = 341.3 \text{ t/dia}$$

$$\text{ou aproximedamente}$$

$$340 \text{ t./dia}$$

C) Proporção de serragem na alimentação

O objetivo era a substituição base poder calorifico superior útil de 5% do consumo de óleo combustivel por serragem.

- a) Dados de produção e consumo
- Consumo especifico médio de óleo: 170 kg/t. cal
- Economia de 5% = 8.5 kg óleo/t. cal
- Produção do forno = 200 t. cal/dia
- Economia desejada:

- 1 tonelada óleo = 9700 Mcal
- 1 tonelada serragem seca = 4400 M cal
- 1 tonelada serragem a 40% de umidade = 600 kg secos
- calor gerado na combustão de l tonelada de serragem úmida (Q_{ϵ})

 $Q_g = 0.6 \times 4400 - QP$ $Q_g = 2640 - QP$

onde QP é o calor perdido pela água da umidade

- b) Dados para o cálculo de QP
- Temperatura de entrada da lama = 54° C
- Temperatura da câmara de fumaça = 140° C
- Calor necessário para aquecer a umidade até 100° C
- $Q_1 = 0.4 \times 1 \times (100 54) = 18.4 M$ cal
- Calor para evaporar a agua $Q_2 = 0.4 \times 540 = 216 \text{ M}$ cal
- Calor para superaquecer o vapor até a temperatura de exaustão dos gases

 $Q_3 = 0.4 \times 0.48 \times (140 - 100) - 7.7$ M cal - Cálculo de QP QP = $Q_1 + Q_2 + Q_3$ QP = 18.4 + 216 + 7.7 = 242.1 M cal. c) Poder calorífico superior útil da serragem úmida (Q 1).

Q 1 = 2640 - QP = 2640 - 242,1

Q1 = 2640 - QP = 2640 - 242,1

ou aproximadamente

2400 M cal/t. serragem a 40%

 $\hat{Q}1 = 2397.9 \,\hat{M} \,\text{cal}$

umidade
d) Conversão óleo combustivel/
serragem

1 toneloda élse = $\frac{9700}{2400}$ = 4 toneladas cerrages a 45% of dade

e) Peso de serragem a ser usado para a economia desejada

1,7 t. óleo x <u>4 t. serragem</u> = 6.8 t. serragem t. óleo

f) Proporção de serragem a ser usada base lama seca para 5% de economia de óleo

6.8 t. serragem/dia x 100 = 2% 340 t. lama seca/dia

D) Proporção de conchas na alimentação do forno de cal

A reposição de cálcio no sistema da Riocell é feita pela incorporação de conchas junto à lama. O consumo de conchas é da ordem de 7,95 kg de conchas por tonelada de celulose produzida. Isso dá um consumo médio diário de cerca de 6,4 toneladas de conchas.

- Proporção de conchas base lama seca

6.4 t. concha/dia x 100 = 1,9% 340 t. lama seca/dia

E) Experiência laboratorial

Uma amostra de lama foi retirada na entrada do forno, secada e analisada para teor de CaCO3 e teor de cal útil, o que resultou em 77,4% e 0% respectivamente. Retiraram-se também amostras de serragem e de concha nos locais de depósito ao ar livre.

Com as proporções previamente determinadas para as misturas de lama seca, serragem úmida e concha como tal, elegeram-se os seguintes tratamentos:

 $T_1 = lama de cal$

 T_2 = lama de cal + 2% de serragem T_3 = lama de cal + 1,9% de conchas T_4 = lama de cal + 2% de serragem + 1,9% de conchas

Para cada tratamento, misturavam-se os constituintes da alimentação e se depositavam as misturas em cadinhos de platina para os ensaios cal seca por tratamento era de 10 gramas.

Os recipientes, contendo as amostras, foram levados à mufla e submetidos ao calor, em uma experiência que constou basicamente de dois testes:

Teste 1) Elevou-se a temperatura rapidamente até 500°C, mantendo-se esta condição durante uma hora. Após, as amostras eram retiradas do forno, tendo seus respectivos conteúdos analisados para:

- a) CaO útil
- b) CaCO3
- c) Perda ao rubro

Teste 2) Para outro conjunto de amostras, elevou-se a temperatura até 500°C rapidamente, mantendo-se esta temperatura durante 1 hora. Após, elevou-se até 800°C mantendo, da mesma forma, durante 1 hora. A seguir, as amostras foram retiradas do forno e as mesmas análises da etapa anterior foram repetidas, exceto a perda ao rubro.

Os resultados alcançados estão apresentados nos Quadros 1 e 2.

em mufla de laboratório, procurouse analisar a forma como a cal se apresentava e nada de anormal foi detectado visualmente nos tratamentos onde se adicionava serragem em relação aos demais. Qualitativamente a cal também mostrava-se aceitável em todos os tratamentos, embora tenha sido notado um teor de cal útil ligeiramente menor para aqueles onde se adicionava serragem. Obviamente, as perdas de peso eram maiores nos tratamentos T4 (lama + serragem + conchas), decrescendo para T_2 (lama + serragem), T_3 (lama + concha) e T1 (lama). Já para a "calcinação" executada a 500°C não se notava, a olho nu, a presença de particulas de serragem ou de carvão nos tratamentos T4 e T2, sendo que a perda de peso porcentual acima de 6% para esses tratamentos deve explicar, com sobras, a queima da maior parte daserragem adicionada.

Os resultados laboratoriais indicaram que a cal não mostraria carvão na sua saida do forno, o que seria trágico para o licor branco, e que a

Análise	Tratamento							
Andrise	T ₁	Т 2	Т 3	T 4,				
Perda de peso na queima, %	5,11	6,19	5,69	6,54				
Cal útil na cal resultante, %	1,96	1,54	2,24	1,68				
CaCO ₃ na cal re sultante, %	76,13	76,89	77,78	77,28				
Perda ao rubro da cal resultan te, %	35,94	36,50	35,31	36,47				

Quadro 1: Ensaio de calcinação em mufla de laboratório. Teste nº 1:uma hora a 500°C

Análise		Tratamento							
	T ₁	Īχ	T a	Т.,					
Perda de peso na queima, %	39,01	39,89	39,11	40,04					
Cal útil na cal resultante, %	76,16	74,48	76,16	75,32					
CaCO ₃ na cal r <u>e</u> sultante, %	2,76	1,38	2,39	1,42					

Quadro 2: Ensaio de calcinação em mufla de laboratório. Teste nº 2: uma hora a 500°C seguido de uma hora a 800°C

500°C a serragem ja estaria queimada. Assim, optou-se pela realização de teste industrial no próprio forno de cal, pois esperava-se, com isso, que na zona intermediária do forno a serragem já deveria ter-se consumido, liberando energia para auxiliar a secar a lama na zona de secagem.

2ª FASE: EXPERIÊNCIAS NO FORNO DE CAL

I) O forno de cal da Riocell

O forno de cal, instalado no setor de requeima de cal da Riocell, foi construído pela F.L. Smith e consiste em um tubo rotativo inclinado. com 85 m de comprimento e 3,3 de diametro, revestido de tijolos refratários. Está apoiado em 3 suportes dispostos de tal maneira, que conferem ao eixo axial uma inclinação de 2,25%. O acionamento normal do forno é feito por um motor de 125 HP, acoplado a um redutor e a um variador de velocidade de controle remoto. Esse conjunto está ligado a um pinhão, que comunica o movimento à coroa, ligada ao corpo do forno por um sistema de molas, que compensa as dilatações e contrações no forno.

A produção nominal diária do forno é de 200 toneladas de cal com 85% de CaO.

A alimentação consiste quase em sua totalidade de lama de cal proveniente da seção de caustificação do licor verde. Por caustificação desse licor verde forma-se o licor branco e sobra um residuo, o qual pode ser separado por decantação, que é a lama de cal. A lama decantada é lavada em dois lavadores de lama para remoção do licor branco residual. A seguir, é encaminhada aos misturadores de lama e dai segue para os filtros de tambor rotativo, sendo mais uma vez lavada e seca por ação de vácuo, até atingir a consistência de entrada no forno. O filtrado, contendo sólidos, é reaproveitado, sendo enviado ao recaustificador. Nesse percurso, a lama é oxidada pela injeção de ar comprimido. O objetivo é se promover a uma oxidação do Na2S presente para diminuição das emissões de TRS do forno.

Para compensar as perdas de carbonato de cálcio ocorridas no processo, existe um sistema de "makeup" para adição de conchas ou calcário.

Após sair dos filtros, a lama é alimentada juntamente com as conchas (quando se faz a reposição) através de uma rosca alimentadora ao forno. Pelo efeito combinado da rotação e da inclinação do forno, a lama desloca-se em direção da zona de calcinação, recebendo o calor dos

em contracorrente.

Pode-se dividir o corpo do forno em zonas características que são: zona de secagem, zona de preaquecimento e zona de calcinação.

Na zona de secagem existe um conjunto de corrente, que tem suas extremidades fixas nas paredes do forno. As correntes homogeneizam a lama, mergulhando e saindo da massa por ação da gravidade e da rotação, promovendo um intimo contato da mesma com os gases quentes. Essa ação permite que se ganhe maior eficiência na transferência de calor e também auxilia na formação das pelotas de lama. A temperatura na região final da zona de secagem atinge 500 a 600°C.

Quando a lama sai da zona de secagem, agora na forma de pequenas pelotas, ela passa para a zona de preaquecimento, onde a temperatura se eleva gradativamente, completando-se a secagem, produzindo-se a queima total da matéria orgânica contida na lama, e produzindo uma expansão na rede cristalina do calcário, o que acarreta formação de microfissuras, as quais facilitarão a reação de calcinação.

Finalmente, o material passa para a zona de calcinação, onde ocorre a reação de dissociação do CaCO3. Note-se, que a temperatura teórica de dissociação do CaCO3 é de 898°C a 760 mm de Hg e atmosfera de 100% de CO2. Entretanto, como as condições do forno industrial são diferentes, necessita-se de uma temperatura mais alta (± 1100°C), devendo-se porém evitar uma temperatura muito alta, o que produziria modificações na estrutura da cal, diminuindo sua porosidade, sinterizando os cristais e tornando menor a reatividade do CaO em seu processo de apagamento ou hidratação. A temperatura e o tempo de permanência nessa zona são fatores de fundamental importância para se produzir uma cal de boa qualidade e reatividade e, consequentemente, uma eficiente reação de caustificação e boa sedimentação.

Nas condições do forno da Riocell, estima-se o tempo de retenção da lama no forno em duas horas.

O combustivel usado para provocar o calor, que calcina o CaCO3 e seca a lama, é o óleo combustivel tipo BPF. Esse passa por um trocador de calor, atinge a temperatura de cerca de 130°C, sendo então enviado ao queimador por meio de uma bomba, a qual fornece a pressão necessária para que, após a mistura com o ar primário, o combustivel seja pulverizado e esteja pronto para

lagem de pressão e de entrada de ar, de tal forma, que se pode regular o comprimento e a largura da chama, deslocando-se assim a zona de calcinação para mais longe ou mais perto da saida.

O forno da Riocell possui satélites, que são cilindros instalados na periferia do corpo. Um conjunto de placas convenientemente instaladas no interior dos tubos guia a cal para fora destes, passando em contracorrente o ar secundário, que é preaquecido.

As perdas de calor em fornos rotativos desse tipo são fundamentalmente função do comprimento do forno, da umidade da lama ingressante, do isolamento termico e das unidades de recuperação de calor especialmente projetadas para essa finalidade.

Os gases de exaustão passam por um "scrubber" lavador de gases e as particulas de lama removidas pela agua de lavagem retornam ao sistema via recaustificador (tanque intermediário entre o clarificador de licor branco e o primeiro lavador de lama).

II) Adaptações para o uso de serragem no forno de cal

A adição de serragem ao forno teve que se adaptar ao sistema existente, pois tratava-se de uma primeira experiência de viabilidade técnica e não se desejava alterar sensivelmente o mesmo. Decidiu-se, assim, valer-se do sistema existente para alimentação de pedra calcária ou conchas para reposição de perdas. Essa solução, apesar das vantagens já mencionadas, restringia os dias de testes àqueles em que não houvesse alimentação de conchas ou calcário. Dessa forma, nunca se testou a adição simultânea de conchas e serragem, porém tudo leva a crer que não existiriam maiores problemas, se o sistema fosse dimensionado para comportar tal carga. Além disso, a adição de serragem ficava amarrada às condições climáticas, quer pelos problemas de manuseio da mesma nos dias chuvosos, como pela alta umidade que ela conteria nessas situações, o que desaconselhava seu uso como combustivel auxiliar.

O sistema de alimentação da pedra calcária consiste, essencialmente, em um depósito alimentador, um empurrador, uma correia transportadora, um moinho de martelos, um elevador de canecas, para levar a pedra moida a um silo, e uma rosca alimentadora com um variador de velocidade.

A serragem era colocada no depósito alimentador por meio de máqui-

na movel dotada de caçamba. Dai, ela seguia pelo sistema até o silo e era alimentada pela rosca à lama de cal. Lama desaguada e serragem ingressavam então juntas e misturadas no forno de cal.

Inicialmente, diversos problemas operacionais foram encontrados até se conseguir uma uniforme e continua alimentação de serragem. Os problemas iniciais se agravavam nos locais onde havia estreitamento para a passagem da serragem: isso acontecia na alimentação do elevador de canecas, na saida do depósito alimentador e na saida do silo. Apareciam problemas também nas áreas onde havia incrustações de calcário ou conchas, pois as incrustações provocavam aglomeração de serragem, causando entupimento da tubulação. No silo e no depósito alimentador, o acúmulo de serragem nas camadas inferiores promovia a formação de verdadeiros "pacotes", que impediam o escoamento normal, interrompendo constantemente a alimentação.

Na tentativa de solucionar esses problemas, tomaram-se algumas medidas, tais como:

- a) cuidadosa limpeza do sistema de alimentação após a adição de concha ou calcário.
- b) instalação de vibradores pneumáticos externos no silo e no depósito alimentador;
 - c) escolha de serragem com umi-

dade e granulometria adequadas. Serragens úmidas e/ou deterioradas e/ou ricas em pó eram desaconselhadas.

d) manutenção de um nivel minimo de serragem no silo, pois a prática mostrou, que um nivel alto geralmente tornava mais dificil a desobstrução da saida do silo, quando isso se tomava necessário fazer.

Com essas medidas, melhoraram sensivelmente as condições de operação, sem contudo ser a condição ideal, pois tratava-se naturalmente de uma adaptação. Isso decorre da inadequação desse tipo de alimentação para um material como a serragem, que tem caracteristicas bem distintas do calcário ou da concha. como p.e., angulo de repouso, peso especifico, etc. Em razão disso, uma vigilância constante em todo o sistema de alimentação era conduzida, de forma a se garantir um fluxo continuo e uniforme de combustivel ao forno. Durante todo o período de experiência, o fluxo de serragem ao forno era medido de 2 em 2 horas. retirando-se também amostras para se avaliar o teor de umidade da serragem.

III. Caracteristicas da serragem utilizada

Foram retiradas, ao acaso, três amostras da serragem alimentada ao forno para avaliação de sua distribuição granulométrica. Os resultados encontrados estão apresentados no Quadro 3.

Quadro 3: Caracteristicas granulométricas da serragem

	Malha		Granulometria, %						
ABNT	Tyler	Abertura (mm)	1	2	3	x			
б	6	3,36	7,73	5,59	6,81	6,71			
10	9	2,00	11,87	8,96	10,69	10,51			
14	12	1.41	13,83	12,64	12,94	13,14			
18	16	1,00	18,47	19,00	20,07	19,18			
35	32	0,50	34,73	35,77	35,64	35,38			
45	42	0,35	8,40	10,51	7,86	8,92			
60	6 0	0,250	3,44	5,08	3,86	4,13			
120	115	0,125	1,16	1,95	1,83	1,65			
140	150	0,105	0,11	0,25	0,23	0,20			
170	170	0,088	0,05	0,08	0,13	0,087			
200	200	0,074	0,06	0,04	0,03	0,043			
230	250	0,062	0,04	0,05	0,08	0,057			
325	325	0,044	с,03	0,03	0,07	0,043			
>325	-	-	0,005	0,008	0,01	0, 0077			

Determinou-se também a densidade aparente da serragem, em quatro amostras distintas, obtendo-se um valor médio de 143 kg a.s./m3.

IV) Ensaios realizados

Definidas as melhores condições operacionais, iniciaram-se os ensaios de avaliação da serragem como combustivel auxiliar no forno de cal. Procurou-se então adaptar um ensaio estatisticamente planejado e programado com rigor científico, sobre uma condição extremamente variável, que é uma situação de operação industrial. Assim sendo, mantinha-se um levantamento rigoroso sobre todas as variáveis envolvidas no processo. Como se tornava impossivel fixar as variaveis por periodos longos de tempo, procedia-se aos ensaios com e sem serragem, de forma intermitente, para depois escolher situações de operação, onde todas as variáveis envolvidas tives-sem comportamento bem homogêneo. Escolheram-se então, para avaliação, periodos de 12 a 24 horas de funcionamento do forno, onde a operação do mesmo se mantivesse a mais homogênea possivel. Cada um desses periodos era definido como uma repetição do tratamento estatistico. As médias das diversas caracteristicas analisadas e medidas eram então associadas a essa repetição.

Durante sete meses se realizaram os ensaios, alternando épocas com adição de serragem, com periodos sem adição de serragem mas com adição de conchas, e periodos com adição apenas da lama. Os quatro primeiros meses foram usados mais para se levantar os problemas e se tentar solucioná-los, ficando os dados levantados nos très últimos meses como representativos do ensaio. Inclusive, precisa-se lembrar o fato. que a queima de serragem gerava uma nova situação operacional e tornava-se necessário descobrir, de novo, a melhor forma de operar o forno, buscando o melhor balanço entre os combustiveis envolvidos.

O planejamento estatistico envolveu então três tratamentos, com três repetições cada, num total de nove parcelas. Os tratamentos estudados foram os seguintes:

T₁: forno funcionando sem serragem, utilizando-se apenas de óleo combustivel

T2: forno funcionando com adição de cerca de 4,0 toneladas de serragem seca por dia, além de óleo combustivel

T₃: forno funcionando com adição de cerca de 7,4 toneladas de serra-

gem seca por dia, além do óleo combustivel

Cada tratamento continha três repetições. Conforme já mencionado, definia-se como uma repetição, ao periodo de funcionamento homogêneo do forno por 12 a 24 horas, mantidas todas as demais variáveis bem similares para todos os três tratamentos.

As adições de serragem, média, máxima e minima, para as parcelas onde isso ocorria, foram as apresentadas no Quadro 4.

Resta mencionar, que adotaramse apenas os três tratamentos em questão, porque se atingiu em T₃, a capacidade máxima do sistema de

Quadro 4: Valores médios, máximos e minimos de adição de serragem

•		Tratamen	to		
Valores	T 2		Т	3	
	kg/min.	t./ dia	kg/min	t./ dia	
	•				
lédios					
a repetição	2,833	4,079	4,820	6,940	
a repetição	2,842	4,092	5,153	7,420	
a . repetição	2,788	4,015	5,483	7,896	
X Médio	2,821	4,062	5,152	7,419	
linimos					
a repetição	2,533	3,648	4,671	6,726	
a repetição	2,533	3,648	4,823	6,945	
a. repetição	2,538	3,655	4,867	7,008	
X Minimo	2,535	3,650	4,787	6,893	
láximos					
a repetição	3,172	4,568	5,012	7,217	
a . repetição	3,188	4,591	5,659	8,149	
a . repetição	3,208	4.619	6,582	9,478	
X Máximo	3,189	4,592	5,751	8,281	

alimentação de serragem ao forno. Para fluxos maiores, ocorriam entupimentos frequentes, impedindo que a operação se desenvolvesse normalmente. Entretanto, desde que se dispusessem de sistemas convenientes para alimentação de serragem, poder-se-ia aumentar o fluxo para até cerca de 20 t/dia de serragem seca, o que significaria o consumo total pelo forno da serragem gerada no setor de preparação de cavacos. Observar que as condições do ensaio permitiram absorver no máximo a terça parte da serragem produzida pela fábrica, havendo, portanto, ainda apreciável quantidade do combustivel serragem à disposição.

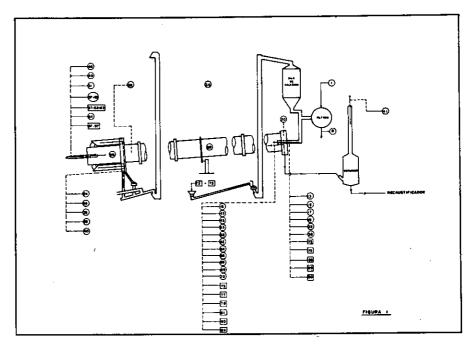
A avaliação da eficiência da serragem como combustivel complementar foi feita através de balanços térmicos e de material em todas as trēs situações correspondentes aos tratamentos T₁, T₂ e T₃. Baseados nos balanços, definiram-se os consumos energéticos especificos e se compararam os três tratamentos por meio de análise da variância. Balanços energéticos e mássicos foram realizados e calculados a cada hora de funcionamento do forno nas três situações. O periodo correspondente a cada parcela tinha então calculado os seus balanços horários médios, envolvendo todas as variáveis.

Para o cálculo dos balanços foram definidas e numeradas as variáveis que o compunham. A seguir, essas estão listadas e associadas aos números que as caracterizam.

Núme	ro Significado	Unidade
(1)	Vazão de lama aos filtros	1/h
(2)	Densidade média da lama	kg/1
(3)	Peso de sólidos em cada 1 kg de lama que vai aos filtros	kg
(4)	Peso dos sólidos que vão aos filtros	kg/h
(5)	Peso de água na lama que vai aos filtros	kg/h
(6)	Peso de sólidos em cada 1 kg de lama que entra no forno	kg
(7)	Vazão de água de lavagem dos filtros	1/h
(8)	Peso de sólidos em 1 kg de filtrado	kg
(9)	Vazão mássica de filtrado	kg/h
(10)	Sólidos no filtrado	kg/h
(11)	Sólidos que entram no forno	kg/h
(12)	Peso equivalente em CaCO3 em cada 1 kg de sólido que entra no forno	kg
(13)	CaCO ₃ que entra no forno	kg/h
(14)	Vazão mássica total de lama que entra no forno (água + sólidos)	kg/h
(15)	Água que entra no forno	kg/h
(16)	Temperatura de entrada da lama	°C
(17)	Calor necessário para aquecer a água até 100°C	kcal/h
(18)	Calor de vaporização da água	kcal/kg
(19)	Calor gasto para evaporar a água	kcal/h
(20)	Temperatura na câmara de fumaça	°C
(21)	Calor específico médio do vapor	kcal/kg°C
(22)	Calor gasto para superaquecer o vapor	kcal/h
(23)	Peso equivalente em cal para cada kg de CaCO3	kg
(24)	Peso equivalente de cal que entra no forno	kg/h
(25)	Calor de formação do CaO	kcal/kg

Númer	o Significado	Unidade
(26)	Calor necessário para dissociar o CaCO ₃	kcal/h
(27)	Vazão de água na saída do "scrubber"	kg/h
(28)	Peso de sólidos em cada 1 kg de água do "scrubber"	kg
(29)	Peso de sólidos na água do "scrubber"	kg/h
(30)	Sólidos (poeira) na chaminé	kg/h
(31) (32)	Peso de sólidos arrastados pelos gases	kg/h
(32) (33)	Peso da cal produzida Temporaturo de cal po caído	kg/h
(34)	Temperatura da cal na saída	°C
(35)	Temperatura média ambiente	°C
(36)	Calor específico da cal e dos inertes	kcal/kg°C
(37)	Calor perdido na descarga da cal	kcal/h
(38)	Peso de inertes em cada 1 kg de sólidos que entram no forno Peso de inertes nos sólidos que entram no forno	kg
(39)	Peso de inertes nos sondos que entram no forno Peso de inertes na cal impura	kg/h
(40)	Calor perdido nos inertes junto à cal	kg/h
(41)	Calor perdido nos sólidos junto com os gases	kcal/h
(42)	Peso equivalente em CO ₂ em 1 kg de CaCO ₃	kcal/h
(43)	Peso de CO2 proveniente da dissociação do CaCO3	kg
(44)	Calor específico médio dos gases	kg/h
(45)	Calor perdido no CO2 da lama	kcal/kg°C
(46)	Peso do óleo combustível que entra no forno (densidade = 0,95)	kcal/h
(47)	Temperatura de entrada do oleo	kg/h °C
(48)	Calor específico do óleo	kcal/kg°C
(49)	Calor que entra com o óleo	kcal/h
(50)	Poder calorífico do óleo	kcal/kg
(51)	Calor produzido pela combustão do óleo	kcal/h
(52)	Peso de CO2 produzido pela combustão de 1 kg de óleo	kg
(53)	Peso de CO2 produzido pela combustão do óleo	kg/h
(54)	Peso da água produzida pela combustão de 1 kg de óleo	kg
(55)	Peso da água produzida pela combustão do óleo	kg/h
(56)	Oxigênio necessário para queimar 1 kg de óleo	kg
(57)	Oxigênio necessário para combustão do óleo	kg/h
(58)	Peso de ar correspondente a 1 kg de oxigênio	kg
(59)	Peso do ar necessário para combustão do óleo	kg/h
(60)	Peso de nitrogênio em 1 kg de ar	kg
(61)	Percentual em peso de O2 nos gases de saída	%
	Peso de O2 nos gases de saída	kg/h
	Peso do ar que entra no forno	kg/h
(64)	Peso do nitrogênio que entra e sai do forno	kg/h
(65)	Calor perdido no CO2 produzido pela combustão do óleo	keal/h
(66) (67)	Entalpia do vapor d'água na temperatura de saída	kcal/kg
(67) (68)	Entalpia da água na temperatura ambiente	kcal/kg
	Calor perdido na água produzida pela combustão do óleo	kcal/h
: :	Calor perdido no nitrogênio do ar para queima do óleo	kcal/h
	Calor perdido no oxigênio do ar para queima do óleo Peso úmido da serragem que entra no forno	kcal/h
· ·	Peso de secos em 1 kg de serragem que entra no forno	kg/h
	Peso da serragem seca que entra no forno	kg
	Peso de água em cada 1 kg de serragem que entra no forno	kg/h
(75)	Peso da água de umidade da serragem que entra no forno	kg loo/b
	Peso de cinzas em cada 1 kg de serragem seca	kg/h
	Peso das cinzas produzidas pela combustão da serragem	kg ka/b
	Peso da água produzida pela combustão de 1 kg de serragem seca	kg/h
	Peso da agua produzida pela combustão da serragem	kg ka/b
	Peso do CO2 produzido pela combustão de 1 kg de serragem seca	kg/h
	Peso do CO2 produzido pela combustão da serragem	kg kg/h
(82)	Peso de O2 necessário para combustão de 1 kg de serragem	
(83)	Peso de O2 necessário para combustão da serragem	kg kg/h
	Peso de ar correspondente a 1 kg de oxigênio	kg/II kg
	Peso de ar necessário para combustão da serragem	kg/h
: - :	Poder calorífico da serragem base seca	kcal/kg
	Calor gerado pela combustão da serragem	kcal/h
	Calor necessário para aquecer a água de umidade da serragem até 100°C	kcal/h
	Colon magazzánia mana a mana	
(89)	Calor necessário para evaporar a água de umidade	kcal/h

Número Significado Unidade


(91)Calor específico das cinzas de serragem kcal/kg°C (92)Calor perdido nas cinzas da serragem kcal/h (93)Calor perdido no CO2 da combustão da serragem kcal/h (94)Calor perdido na H2O de combustão da serragem kcal/h (95)Temperatura em que inicia a combustão da serragem ٥C kcal/kg°C (96)Calor específico da serragem (97)kcal/h Calor necessário para aquecer a serragem até a temperatura da combustão (98)Temperatura na zona intermediária ٥C

Para simplificação dos balanços horários, tomou-se o rendimento da calcinação como igual a 100%, embora por cálculos tenha-se observado que o mesmo era da ordem de 98,4% a 99%. No anexo I, está apresentada a forma como foi calculado um dos balanços horários, representando o exemplo, um balanço térmico e material de uma situação onde estava sendo adicionada serragem e óleo como combustiveis. A adição de serragem, no exemplo em pauta, era de cerca de 169,42 kg/h, equivalente a 4,066 t./dia.

Temperatura na zona de calcinação

(99)

Com o objetivo de permitir uma mais fácil localização dos parâmetros principais dos balanços realizados, elaborou-se a Figura 1, onde tais parâmetros estão mostrados pelos seus números respectivos em um esquema simplificado do forno de

٥C

Quadro 5: Balanços de material resumidos: medias por parcela e por tratamentos dos balanços horários (kg/h)

					•	ratam	ento						
Parâmetros	-	1	1		Т2					T ₃			
	1	2	3	ķ	1	2	3	Ř	1	2	3	ķ	
MATERIAL QUE ENTRA	63557,2	64987,8	60019,2	62854,7	61740,6	61124,3	61724,8	61529,9	55586,9	59374,1	59595,1	52125,4	
- CaCO ₃ da lama (13)	11443,7	12195,8	11548.5	11729,3	11087,6	10924,6	11025,7	11012,6	9375,5	9888,6	10841,7	10035,3	
- Água da lama (15)	11704,0	12273,6	10024,7	11334,1	10821,9	10767,4	10460,8	10683,4	9182,5	10302,5	10477,9	99\$7,6	
- Inertes da lama (38)	2799.0	2805,8	2070,0	2558,3	2713,4	3583.5	3539,3	3278.7	2283,1	2570,7	2659.6	2504,5	
- Öleo (46)	1685,9	1761,3	1587,5	1678,2	1571,3	1567,5	1615.0	1584,6	1330.0	1425.0	1393,3	1382,8	
- N ₂ (64)	28378,1	28383,3	27496,5	28086,0	27832,8	26800,3	27453.4	27362,2	25962,2	27309,5	26468.0	26586,6	
- O ₂ (57+62+83)	7545.6	7547,9	7312,1	7468,9	7401,6	7127.0	730D.6	7276,4	6875.7	7262,4	7043,9	7060,7	
- Serragem seca (73)	-	-	-	-	169,4	207,8	191,1	189,4	277.8	299.2	359,4	312,1	
- Água de umidade da serragem (75)	-	-	-	-	142,6	146,2	138,9	142,6	300,1	316.2	331,2	315,#	
MATERIAL QUE SAI	63557.2	64987.8	60019,2	62854,7	61740,5	61124,3	61724,6	61529,9	55588.0	59375.3	59596,5	58186,6	
- Água da lama (15)	11704,0	12273,6	10024.7	11334,1	10821,9	10767.4	10460,8	10683,4	9182.5	10302,5	10477,9	9987,6	
- Cal da lama (24)	6408,5	6829,7	6467,1	6568,4	6209,0	6117,8	6174,4	6167,1	5250,3	5537,7	6071,4	5619,2	
- Inertes da lama (38)	2799,0	2805,8	2070,0	2558,3	2713,4	3583,5	3539,3	5278,7	2263,1	2570.7	2659,6	2504,5	
- CD ₂ de lema (43)	5035,2	5366,2	5081,3	5160,9	4878,5	4806,8	4851,3	4845,5	4125,2	4351,1	4770,3	4415,5	
- CO ₂ da combustão do óleo (53)	5243,1	5539,8	4874,9	5219,3	4886,7	4874,9	5022,6	4921,1	4136,3	4431.8	4333,3	4300,5	
- H ₂ O da combustão do óleo (55)	2292,8	2422.6	2131.8	2282,4	2137,0	2131,8	2196,4	2155,1	1808.8	1936.0	1694.9	1880,6	
- 0 ₂ (62)	1696,6	1366,8	1872,9	1645,4	1737,3	1427.9	1457.7	1541,0	1912.0	1942.2	1758.D	1870,7	
- N ₂ (64)	28378,1	28383,3	27496,5	28085,9	27832,8	26800,3	27453,4	27362,2	25962.2	27309.5	26488.0	26586,6	
- Água de umidade da serragem (75)	-	-	-	-	142,6	146,2	138,9	142,6	300,1	316,2	331.2	315,8	
- Cinzas da serragem (77)	-	-	-	-	0,64	0,79	0,73	0,72	, 1,06	1,14	1,37	1,19	
- Água da combustão da serragem (79)	-		-	-	89,3	109,6	100,8	99,9	147,8	158,4	190,3	165,2	
- CD ₂ da combustão da serragem (81)	-	-	-	-	291,2	357,2	328,4	325,6	479,4	516,2	620,2	538,6	

cal. Os números envolvidos por um circulo referem-se a parâmetros comuns a todos os tratamentos, enquanto os números envolvidos por um quadrado referem-se apenas aos

tratamentos com adição de serragem como combustivel complementar.

Elaborados e calculados os balanços térmicos e de material, médios para cada parcela, procurou-se relacionar nos Quadros 5 e 6, apenas os principais parâmetros envolvidos nos balanços, para se verificar as principais diferenças entre os tratamentos.

Quadro 6: Balanços térmicos resumidos: médias por parcela e por tratamentos dos balanços horários (kcal/h)

					Trat	ament	٥				•	
Parāmetros		•	Ť,				T ₂			T	<u> </u>	
	1	2	3	χ	1	2	3	, X	1	2	3	Ř
CALOR QUE ENTRA	16447201	17380547	15299319	16375689	16031458	16357528	16455904	16281630	14138311		•	14796819
- Calor que entra com o óleo (49) - Calor da combustão do óleo [51]	24335 16352866	102422 17278125	95069 15204750	73942 16278580	85400 15241610	83077 15410875	85595 15576260	84691 15409581	76669 12901000	85001 13822500	82416 13515333	\$2029 13412944
- Calor da combustão da serragem [87-97]	-	-	-	-	204448	863575	794049	787357	1158642	1247812	1499085	1301846
CALOR UTILIZADO	14702413	15458450	13903468	14668110	13668149	13997754	13933008	13866303	12323991	13477790	14003387	13268389
- Calor para aquecer a água — da lama (17)	482602	490943	451112	474886	432878	473764	460275	455639	422394	473914	481987	459432
- Calor para evaporar a água da lama (19)	6235111	6627733	5413343	6092062	5483858	5814380	5648827	5649022	4958539	5583334	5658106	5395326
 Calor para superaquecer o vapor da água da lama (22) 	207313	185166	192474	194984	194160	206733	210389	203761	152894	192931	196701	180842
- Calor para dissociar o CaCO ₃ da lama (26)	4926957	5250658	4972398	5050004	4773517	4703357	4746879	4741251	4036427	4257402	4567651	4320493
 Calor perdido na cal que sai do forno (36) 	90157	99940	103056	97721	79663	63445	67389	70166	84205	85761	95896	88621
- Calor perdido nos inertes junto com a cal (40)	38718	41054	32985	37586	34459	37163	38629	36750	36624	38501	42008	39044
- Calor perdido na poeira junto com os gases (41)	25747	23824	35269	28280	23827	82165	66599	57530	21736	366B9	32074	30167
- Calor que sai com o CD ₂ de lama (45)	153564	158076	170823	160821	142063	139975	143795	141944	131836	. 143904	171007	148916
 Calor que sai com o CO₂ da com- bustão do ôleo (65) 	159746	163193	163885	162275	142302	141958	148871	144377	132217	146721	143346	140761
- Calor que sai com a H ₂ O de com- bustão do óleo (58) - Calor que sai com o N ₂ (59) - Calor que sai com o O ₂ (70)	1460510 670192 51794	1541481 836115 40264	1380767 924376 62962	1460919 876894 51673	1350137 810491 50591	1343844 780426 42583	1386631 813717 43207	1360204 801545 45460	1165213 829866 61141	1252405 909772 65747	1224510 885563 60592	1214045 875067 62493
- Calor para aquecer a umidade da serragem até 100°C (88)	-	-	-	-	5703	6433	6113	6083	13806	14543	15354	14568
- Calor para evaporar a umidade da serragem (89)	<i>:</i>	-	-	_	76993	78948	75022	76988	162067	170728	178839	170545
- Calor para superaquecer o vapor da umidade da serragem (90)	_	-	-	_	2558	2807	2801	2722	4976	5946	6268	5731
- Calor perdido nas cinzas da ser ragem (92)		-	-	-	14	18	17	16	26	29	35	30
- Calor perdido no CO ₂ de queima da serragem (93)	_		_	-	5480	10402	9735	9539	15292	17099	20496	17629
 Calor perdido na água gerada na queima da serragem (94) 	-	-	-	-	56451	69083	63612	63049	94729	102363	122954	106682
PERDA NA CARCAÇA												
- kcal/h - %	1744788 10,6	1922047 11,1	1346222 8,8	1671019 10,2	2363309 14,7	2359774 14,4						

A partir dos balanços térmicos e de massa, procurou-se estabelecer uma forma viável de se relacionar os diversos tratamentos, no que concerne ao consumo especifico de óleo. Em geral, a base fixa, que se costuma adotar, é a produção de cal na saida do forno. Decidiu-se porem que essa não se constituia, no caso, em um bom indice, em função do teor variável e elevado de inertes, o que atrapalharia os cálculos. Optou-se então, como base fixa, pelo fluxo de lama seca ao forno de cal. Como essa lama entra no forno com um teor variável de umidade, decidiu-se expressar o consumo especifico como a quantidade útil de óleo necessário para ser consumida apenas pela lama seca. Subtrairam-se assim os gastos de óleo para aquecer, evaporar e elevar a temperatura do vapor da água da lama ingressante ao forno.

O calor gasto com a água da lama era constituido de: calor gasto para aquecer a água até 100°C, calor para evaporar a água, calor para supera-

quecer o vapor até a temperatura de saida dos gases.

Os resultados obtidos para o consumo específico de óleo para os três tratamentos constam do Quadro 7.

Quadro 7: Consumo especifico de óleo combustivel em kg óleo/t. lama seca

D	Tratemento						
Repetição 	T ₁	Т 2	Т 3				
1	68,54	68,30	65,1				
2	69,25	67,72	62,8				
3	71,12	65,52	, 54.8				
	69,64	67,18	60,9				
Quadro 8: Análise o	la variância para	consumo especifico	de óleo				
Causa de variação	GL	QМ	F				
Tratamento	2	60,5512	5,45				
Resíduo	6	11,1168					
Total	8	187,8034					

[[]celor combustão úleo - Calor gasto com H₂D de lama

⁹⁷⁰⁰ Fluxo de lama seca

^{*} Significativo ao nível de 5% de probabilidade

Os valores obtidos foram analisados estatisticamente pelos testes F e de Tuckey, conforme mostra a análise da variância do Quadro 8.

A diferença minima significativa pelo teste de Tuckey, ao nivel de 5% de probabilidade, foi calculada como delta = 8,35.

Dessa forma apenas os tratamentos T₁ e T₃ diferiram estatisticamente.

Baseados nos dados obtidos para consumos especificos, o uso de cerca de 4 t./dia de serragem seca ao forno permitiu uma economia de aproximadamente 3,5% de óleo combustivel. No caso de se adicionar 7,4 t./dia de serragem, atingiu-se a elevada economia de 12,52% de óleo. Entretanto, esse valor deve ser encarado com ressalvas devido ao valor anormal obtido para a 3ª repetição do tratamento T3. Abandonando esse valor e trabalhando-se apenas com a média das duas outras repeticões, obteve-se uma economia de 8.16% de óleo combustivel, o que é mais aceitável.

Para se avaliar o comportamento qualitativo de todo o setor de caustificação/forno de cal durante o periodo da experiência, retiraram-se também as médias de algumas caracteristicas analisadas rotineiramente. No Quadro 9 estão apresentados os valores médios dessas propriedades para os três tratamentos ensaiados na pesquisa.

DISCUSSÃO DOS RESULTADOS E CONCLUSÕES

Tanto os ensaios laboratoriais como os industriais revelaram o largo potencial existente para o uso de serragem como combustivel complementar no forno de cal. As adições de serragem testadas no forno de cal mostraram como efeito mais evidente uma economia significativa e importante do óleo combustivel. Entretanto, e mesmo possivel que maiores economias possam ser alcançadas, se maiores quantidades de serragem fossem adicionadas ao forno. Infelizmente, as limitações na forma de adicionar a serragem impediram se tirar conclusões do comportamento do forno e da economia de óleo para mais altas cargas de serragem.

Ao longo de toda a experiência inclustrial com serragem, não se notaram

Quadro 9: Caracteristicas médias do setor caustificação/forno de cal durante a experiência

	Tı	ratamento	
Características -	Т1	T ₂	T,
Lama			
- fluxo para os filtros, 1/min.	461,2	470,0	422,5
- densidade para os filtros, kg/l	1,32	1,31	1,31
- % sólidos	37,66	37,73	39,13
Filtro de lama I			
- água de lavagem, l/min.	42,6	50.0	49,2
- NaOH na saida, %	0,68	0,53	0,72
- % sólidos na saida	54,6	56,0	55,1
Filtro de lama II			
- água de lavagem, l/min.	43,7	59,2	55,0
Filtrado			
- densidade, [♥] Bé	1,24	0,57	3,73
- % sólidos	1,93	1.40	1,83
- álcali total, g/l	6,31	6,22	7,87
Queimador de óleo			
- temperatura óleo, ⁹ C	133,4	134,0	130,3 1,44
- fluxo, m³/h	1,70	1,66	1,44
Forno de cal			
- temperatura da câmara de fumaça, °C	139,1	137,3	137,3
- temperatura da zona intermediá-	523,3	549,2	566,7
ria, [°] C - temperatura da zona de queima,	1087,5	1103,3	1090.4
•C			
- velocidade, rpm	1,14	1,04	1,06
- CaCO ₃ na lama na zona intermed <u>i</u>	79,14	80,50	80,29
āria, %			
Gases de exaustao	2.08	3,90	4.45
- O ₂ (Orsat), %	2,98 9.7	6,9	6,3
- H ₂ S , ppm	0.,	-,-	
"Scrubber" - Agua - % solidos	1,19	1,42	1,58
- ålcali total	1,79	2,20	3,40
Cal queimada - % CaCO	1,85	1,67	1,74
- CaO útil, %	69,28	69,73	70,50
Serragem			50.00
- umidade, %	_	46,39	50,38
Lama processada	14015	1#122	12540
- seca, kg/h	14315 25681	14132 24720	22527
- úmida, kg/h	2,001	2 20	·
Cal impura produzida	8159	7817	7243
- fluxo, kg/h	6.133	,01,	

problemas, no que concerne à qualidade da cal, que se mostrava de caracteristicas semelhantes à cal usualmente obtida sem serragem. Não foram constatadas diferenças físicas, químicas ou estrutrais na cal, os licores branco e verde não apresentavam resíduos de combustão, e todo o sistema caustificação/forno de cal funcionou por todo o período sem restrições operacionais. Interessante mencionar, é que as amostras de lama coletadas na zona intermediária do forno já não apresentavam traços de serragem, indicando que a mesma já houvera queimado.

As emissões aéreas pela chaminé do forno também não se alteraram para pior pelo uso de serragem, apenas tendose notado uma maior concentração em sólidos e álcali na água de lavagem

residual do "scrubber". Inclusive a emissão de H2S era diminuída quando se usava serragem, por dois motivos principais: aumento do teor de O2 residual nos gases de exaustão e diminuição na carga de óleo combustível ao forno, óleo esse com alto teor de enxofre.

Como a condição operacional com serragem era algo diferente do usual, o sistema de queima ensaiado não pode ser considerado como otimizado. Certamente, com base em balanços bem cuidadosos, é possível se trazer o forno a uma condição de ótima operação com serragem. Tanto é verdade que a operação não estava otimizada, que observou-se uma maior perda de calor pela carcaça do forno, mostrando que havia um ligeiro desbalanceamento térmico no forno, quando se usava serragem.

Isso pode ser também constatado pelo aumento da temperatura na zona intermediária do forno, quando se usava serragem (Quadro 9).

Como conclusão geral, pode-se con-

firmar a perfeita viabilidade técnica da serragem como combustivel auxiliar ao forno de cal do setor de caustificação/requeima de cal em fábricas de celulose kraft.

ANEXO I

Exemplo de balanço horário térmico e de material do forno de cal, quando do uso de serragem como combustível complementar.

BALANÇO TÉRMICO E DE MATERIAL (RESUMD)	Material que sai	
Local: forno de cal	- Agua da lama (15)	10821,96 kg/h
Situação: adição de serragem e óleo combustível	- Cal da lama (24)	6209,05 kg/h
	- Inertes da lama (38)	2713,36 kg/h 4878,54 kg/h
A) Balanço térmico horário médio	- CD ₂ de combustão do óleo (53)	4886,24 kg/h
Calor que entra	- H ₂ O da combustão do ôleo (55)	2136,97 kg/h
enera que enera	- 0 ₂ (62)	1737,34 kg/h 27832,79 kg/h
- calor que entra com o óleo (49) 85400,16 kcal/h	- Água de umidade da serragem (75)	142,58 kg/h
- calor da combustão do óleo (51) 15241610,00 kcal/h - calor da combustão da serragem	- Cinzas da serragem (77)	0,64 kg/h
(87 - 97)	- Agua da combustão da serragem (79)	89,35 kg/h
Calor total = 16031458,52 kcal/h	- CO ₂ da combustão da serragem (81)	291,23 kg/h
Calor utilizado	Total	= 61740,55 kg/h
- calor para aquecer a água da la		
ma (17) 432878,40 kcal/h	C) <u>Discriminação dos balanços</u>	
- calor para evaporar a 'água' da lama (19) 5483858,40 kcal/h	l. tama (CaCO ₃ , inertes e āgua)	
- color para superaquecer o vapor formado da água da lama (22) 194160,03 kcal/h		
- calor para dissociar o CaCO ₃ da lama (26)	l.l. Lama e água aos filtros	
- calor perdido na cal que sai do	(1) (2) (3)	- [5]
forno (36)	(1) (2) (3) 28200 x 1,31 x (1-0,377) =	23014,87 kg/h
à cal (40) 34459,36 kcal/h		
- calor perdido na poeira junto com os gases (41)	(1) (2) (3) 28200 x 1,31 x 0,377 =	(4) 13927,13 kg/h
- calor que sai com o CO 2 gerado da lama (45) 142063,08 kcal/h	20200 1 1132 1 0,57	
- calor que sai com o CO ₂ da com-	(1) (2) (6) (3) (7) (6)	(9)
bustĕo do óleo (65) 142301,87 kcal∕h - calor que sai com a água gærada	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	19216,64 kg/h
na combustão do óleo (68)	(0,56-0,008)	
- calor que sai com o N_2 (69)		(10)
(70) 50591,34 kca1/h	(9) (8) 19216,64 × 0,008	(10) 153.73 kg/h
- calor para aquecer a umidade da serragem até 100°C (08) 5703,20 kcal/h		
- calor para evaporar a umidado da serragem (89)	1.2. Lama ao forno	
- calor para super-aquecer o va-	(4) (10)	[11]
por gerado pela umidade da ser- ragem	13927,13 - 153,73 -	13773.4 kg/h
- calor perdido nas cinzos da ser ragem [92]	(11)	(13)
- calor perdido no ${\rm CO}_2$ da queima da serragem (93)	13773,40 x 0,805 =	11087,59 kg/h
- calor perdido na H₂O da queima		
da serragem (94) 56451,33 kcal/h	1.3. Agua que entra no forno	
Calor total utilizado = 13668149,14 kcal/h	(6) (11)	(14-)
Perda na carcaça do forno	(1:0,56) x 13773,40 =	24595,36 kg/h
calor que entra - calor utilizado	4-12	(15)
16031458,52 - 13668149,14 = 2363309,38 kcal/h	(14) (11) 24595,36 - 13773,40 =	(15) 10821.96 kg/h
Perda porcentual = 2363309,38 x 100 = 14,7%		
16031450,52	1.4. Calor para aquecer a água da lama até	10090
	1.4. Calor para aquecer a ague do Tamo acc	
B) Balanço material	(15) (15)	(17) 432878,40 kcal/h
	10821,96 × (100-60) -	432070,40 KCa1711
Material que entra	(15) (16)	[19]
- CaCO ₃ de lama (13) 11087,59 kg/h	10821,96 x 540 =	5843858,40 kcal/h
- 'Agua da lama (15)	(15) (20)	(22)
- Inertes da lama (38)	10821,96 × (137,3-100) × 0,481 •	194160,03 kcal/h
- N ₂ (64) 27832,79 kg/h		
- 0; (57 + 62 + 83)	1.5. Calor para dissociar o CaCO3	
- Serragem seca (73)	(22)	(24)
Total = 61740.55 kg/b	(13) (23) 11087,59 × 0,56	124) 6209,05 kg/h

	(24)		(25)		(26)	2.14.	Calor para aquecer a serragem até a temperatura de com-
	6209,05	×	768.8	= 4	773517,64 kcal/h		bustão
2.	Serragem ac	fornu					(8D) (95) (16) [96) (97)
2.1.	Serragem se	eca que	entra		•	1	69,42 x (500 - 60) x 0.56 = . 40999,64 kcal/h
	(71)		(72)		(73)	3.	"Make-up" de calcáreo ou conche
	312,00	*	0,543	=	169,42 kg/h	٥,	
							Não ocorreu.
2.2.	Água, de um:	idade da	serragem				
	[71]		(74)		[75]	4.	Descarga da cal
	312,00	×	0,457	*	142,58 kg/h	4.1.	Poeira retida na água do "scrubber"
2,3.	Peso das c	invas pr	onduzidas				(27) (28) (29)
2,3.	reso des c	111283 PT					64246,00 x 0,012 770,96 kg/h
	(73) 169,42	×	(76) 0,0036	r	(77) 0,64 kg/h		
	100,11		.,			4.2.	Poeira na chaminé
2.4.	Água produ	zida pel	la combustão d	a serrag	em		[30]
	/		(78)		(79)		80 kg/h
	(73) [77) 69,42-0,64)	×	0,5294	=	89,35 kg/h		Peso de sólidos arrestados palos gases
						4.3.	
2.5.	CO ₂ produz	ido pela	a combustão da	serrage	e ro		(29) (30) (31) 770,95 + 80 = 850,96 kg/h
	(73) (77)		(80)		(81)		,,,,,,,
	64,42-0,64)	x	1,7255	=	291,23 kg/h	4.4.	Peso teórico de cal produzida
							24) (31) (12) (23) (32)
2.6.	Ar necessá	rio para	a combustão da	serrage	em_	620	19,05 - {650,96 x 0,805 x 0,56} = 5825,44 kg/h
	(73) (77)		(62)		(83)	4.5	
(1	69,42-0,641	×	1,2549	=	211,80 kg/h	4.5.	Calor perdido na descarga da cal
	(83)		(84)		(85)		(32) (33) (34) (35) (36) .825,44 x (80-25,3) x 0,25 = 79662,79 kcal/h
	211,80	×	4,76	•	1008,17 kg/h	-	.825,44 x (80-25,3) x 0,25 = 79662,79 kcel/h
2.7.	Calor pro	duzido p	nela combustão	da serr	agem	4.6.	Peso de inertes na lama
	(73)		(86)		(87)		
	169,42	×	4400	π.	745448,00 kcal/h		(11) (37) (38) 13773,40 x 0,195 = 2713,36 kg/h
2.8.	Calor par	a aquece	r a umidade d	a serrag	em até 188 <u>°C</u>		· · · · · · · · · · · · · · · · · · ·
			(16)		(88)	4.7.	Peso de inertes na cal
	(75) 142,58	×	(100-60)		5703,20 kcal/h		(11) (31) (37) (39)
						, (1	3773,40 - 850,96) × 0,195 = 2519,68 kg/h
2.9.	Calor par	a evapor	ar a umidade	da serra	gem		•
	[75]		() B)		(89)	4.8.	Calor perdido nos inertos junto à cal
	142,58	×	540	=	76993,20 kcal/h		(39) (33) (34) (35) (40)
						2	\$19,88 x (80-25,3) x 0,25 = 34458,36 kcel/h
2.10.	Calor par	a supera	squecer o vapo	r da uma	dade da serragem		
		{20}	001 - 0477	•	(90) 2558.07 kcal/h		
	142,55 X (13/,3-1	00) × 0,481		2330,07 X081711	4.9.	Calor perdido na poeira junto com os gases
2,11	Calor per	dido na	e cinzas				[31] (20] (34] (35) (41) 880.96 x [137.3-25.3] x 0.25 = 23826,88 kcal/h
2.11	Calor per	d100 Hg.	3 1111243				850,96 x (137,3-25,3) x 0,25 = 23826,88 kcal/h
	(77) (0.64 × (1	(20) [34 (37,3-25			14,34 kcal/h	5.	Gases liberados pela calcinação da lama
	0,04 x (2	.07,0 22	,,, , ,,,		•		
2.12	Calor oa:	rdido na	CO ₂ da combus	stão da	serragem	5.1,	Peso do CO ₂ na lama
				-	.		(13) (42) (43)
	(81) (291,23 x []	(20) (3 137,3-25			(93) 8480,62 kcal/h		11087,59 x 0,44 = 4878,54 kg/h
							Calor perdido no CO ₂ da lama
2.13	. Calor pe	rdido na	agua da comb	ustao da	serragem	5.2.	cavet hatered un col da rama
	[79] 89,35	L.	(66) (67) (657,1-25,3)		[94] 56461,33 kcal/h		(43) (20) (34) (44) (45) 4878,54 x (137,3-25,3) x 0.26 = 142063,08 kcal/h
	08,35	×	(00/,1-25,3]	•	30-31,33 RC01/II		TIESDAY OF THE TENTON TO THE T

6.	Combus	tảo do óle	<u> 20</u>						
6.1.	Calor	que entra	com o	6100					
	(46)	(48)		(47)			[48]		
	1571.3	x 0,5	×	(134-2	25,31	-	85400.16	kcal/h	
6.2.	Calor	produzido	pela	combus	tão do	őlec	!		
	(46)			(50)			(51)		
	1571,3	×		9700			15241610.00	kcal/t	
6.3.	CO, produzido pela queima do óleo								
	(46)			(52)			(53)		
	1571.3	3 x		3,11		=	4886,7	4 kg/	
6.4.	. Н₂П р	roduzida p	ela q	ueima d	lo ólec	<u>!</u>			
	(46)			(54)			(55)		
	1571,	3 ×		1,36			2136,9	17 kg/	
	6.5.	Peso de O,	r ar n	eccssári	o para c	ueima	de ólen		
		(45)		[56)		(57)		
		1571,3	×	. 3,4	7		5457,41	Kg/h	
		[57]		(58	-1		(59)		
		5452,41	*	4,7	Б		25853,4 <i>2</i>	Kg/h	

Gases de compustão

7.2.	Ar que entra	en forme e	ars cueima	do Sie	с и квъробец	
4501	(65)	1.623	(58)		(63)	
25013	17 - 1508 17	1232.34	x 4.75		35231,38 mg/	16
7.3.	Peso do mitr	oganio que	enura a sy	1 2001 0	ar de sombuit	<u></u>
	(631		(60)		164)	
	35231,38	*	U.79	•	27832.78 hg.	/ h
	Calor perdis	lo nos gase	s de combu	stão		
_	0 2		(44)		[65]	
	53) (20 6,74 × (137)			,	142301,87 kcal	7.h
4 6 c	.b,/5 -x 113/.	. 5-11,01				
		(66)	(67)		(68)	
(55)					1350137,85	kcal/h
2136,9	7 ×	(65/,1-	25,3)		,	
N ₂						
[64]	(20)	(34)	[44)		(69)	
27832,79	x (137,3-	25,3) ×	0,26	-	810490,84	kcal/h
<u>0 :</u> (62)	(20)	(34)	(44)		(70)	
1021	x {137,3-	25.31 ×	0.26	-	50591,34	kcal/t
1/3/,34	X (13.75					

LITERATURA CITADA

MERLIN, E.S.B. - Utilização de casca de madeira como combustível auxiliar em forno de cal - Uma experiência promissora. XII Congresso Anual ABCP, 1979, 8 p.