OBTENCION DE PULPAS QUIMICA BLANCA SIN USO DE COMPUESTOS CLORADOS (*)

Gabriela Salvadores V.; José Paz P.; Roberto Melo S. Universidad de Concepción, Concepción.

SUMARIO

La industria de celulosa kraft, tiene la gran desventaja de la carga de sus efluentes de blanqueo, los que llevan productos de gran riesgo para el biosistema, por ejemplo las dioxinas, capaces de actuar en concentraciones muy bajas, cambiando la expresión genética de los seres vivos. Por otra parte el mercado está exigiendo pulpas que no contengan dioxinas.

Este trabajo investiga la posibilidad de nuevas técnicas para la obtención de celulosa, cuya lignina remanente sea de fácil remoción, evitando así el uso de agentes clorados, responsables de estos problemas.

La idea fue modificar el proceso de pulpaje, de modo de dejar la lignina más reactiva. Por esta razón, tras un estudio bibliográfico, se estudió la factibilidad técnica de obtención de pulpas mediante el proceso organosolv, usando como reactivos ácidos peroxiacético (ácido acético y peróxido de hidrógeno), formado "in situ" y ácido sulfúrico como catalizador.

Se obtuvo pulpas crudas con buenas propiedades físicas y mecánicas dentro del rango para pulpa cruda de eucalipto.

(*) Este trabajo se desarrolló como parte del Proyecto PNUD CHI 87/018.
1. **Antecedentes**

La tendencia actual en los países desarrollados, es la eliminación o disminución de los compuestos que ponen en peligro el medio ambiente. Los efluentes de las plantas de blanqueo convencional, tienen una gran carga de productos (órdeo-clorados) dañinos para el medio receptor.

Específicamente, durante el blanqueo de pulpa kraft, se disuelven del orden de 45 a 90 kg de material orgánico por tonelada de pulpa, de estos, 5 kg corresponden a compuestos órego-clorados. Como la producción mundial alcanza los 50 millones de toneladas al año, se puede decir que se descargan al ambiente, aproximadamente 250.000 toneladas de compuestos órego-clorados al año (1).

Al caracterizar la lignina residual del proceso kraft, se encuentra que un alto porcentaje (45-75%), requiere de agentes químicos especiales para su remoción, su naturaleza dificulta la disolución. En este grupo se encuentran las fracciones de más alto peso molecular con los enlaces cruzados, lignina químicamente unida a polisacáridos como también la lignina reprecipitada durante la cocción. Otra fracción importante (20-50%), la forman la lignina retenida en la microestructura de la pared de la fibra, que difunde extremadamente lenta desde la pulpa, por lo cual también requiere de compuestos químicos pero en condiciones más suaves. Finalmente se encuentra una pequeña fracción (<5%) de lignina cuya remoción es fácil (lavado o extracción), este grupo lo forma la lignina soluble ubicada en los microporos y capilares de la fibra y lignina unida físicamente a la fibra (2).

De acuerdo a investigaciones, especialmente de científicos soviéticos, el pulpaje con ácidos orgánicos es un medio eficiente para obtener pulpa, sin uso de azufre. Se puede obtener pulpa blanca, de coníferas y latifoliadas por una oxidación en dos o tres etapas con peroxiácidos y peróxido de hidrógeno alcalino. Este método tiene la ventaja de no usar productos químicos que contengan cloro y azufre.

Debido a lo interesante que parecieron los trabajos con ácido eroxifórmico realizados recientemente por científicos finlandeses, los objetivos del trabajo se orientaron hacia un estudio de factibilidad técnica de la obtención de pulpa química blanca mediante el proceso organosolv, usando como reactivos ácido peroxiacético (HAc y H2O2) formado "in situ" a partir de ácido acético y peróxido, ya que presenta un costo mucho menor lo que hace atractiva la investigación.

Si se compara con el pulpaje convencional, ofrece las siguientes ventajas:
- Pérdidas de ácido acético pueden ser recompensadas por los grupos acetil en la madera.
- La energía para la evaporación del ácido acético es menos de un quinto de la necesaria para evaporar agua.
- No son necesarios estanques a presión.
- La cantidad de agua de lavado es drásticamente reducida.
- Por último la gran ventaja de que los efluentes no contienen azufre ni cloro. (3)

2. Diseño y Programación

A continuación se detallan los parámetros del proceso y los rangos de operación según las recomendaciones en literatura para las pulpas peroxífórmicas.

Temperatura.
El rango encontrado en la literatura está entre los 70°C y 100°C. Se debe considerar que cocciones a temperaturas altas aumentan la designificación pero el rendimiento se ve afectado. (4) (5)

Presión.
Una de las ventajas de este proceso de pulpaje, es que se aplica a bajas presiones (atmosférica). Una operación a alta presión afecta el rendimiento. (6)

Concentración de ácido.
La concentración de ácido tiene gran efecto en la reacción del peroxiácido, ya que mientras menos agua se tenga en el medio reaccionante el equilibrio se desplaza hacia la formación del peroxiácido.

Los niveles de concentración que se encontraron están entre los 80% y 100%. (7)

Carga de peróxido.
Se encontró que el mínimo consumo de peróxido, para obtener pulpa de latifoliada blanca (90% ISO), fluctúa alrededor del 2,6% (sobre madera seca). En las etapas de pupaje el consumo mínimo fue entre 1 y 2%. (8)

Razón licor madera.
Los niveles mencionados en literatura son 4:1 y 5:1. (9)

Catalizador.
Se puede usar ácido sulfúrico como catalizador en las etapas 1 y 3, el cual acelera significativamente la formación del peroxiácido. Se debe tener presente que con la adición de este catalizador se afecta el rendimiento y la viscosidad de la pulpa.
Este parámetro se estudió en forma cualitativa (con/sin), la cantidad usada es la que recomiendan en la literatura. (10)

Tiempo de reacción.
En la literatura se señala un tiempo de reacción total entre 2 y 10 horas. (11)

Esta etapa intermedia tiene un tiempo de reacción mayor; entre 3 y 4 horas, mientras que para las etapas con peroxiácido se recomienda un tiempo de reacción entre 1 y 3 horas.

En general, el tiempo de reacción si es demasiado prolongado produce recondensación de lignina.

Las pulpas peroxiácidas fueron totalmente blanqueadas con una multietapa alcalina de peróxido, hasta alrededor de los 90 puntos de blancura. (12)
Se hizo el blanqueo repartiendo el peróxido a agregar, en dos o tres etapas, cargando al comienzo 2/3 y después de 30 minutos se agregó el resto.

Cargas de hidróxido de sodio.
Se trabajó a pH entre 10 y 11, el cual es ajustado con NaOH.

Temperatura.
La literatura, en general coincide en un mismo valor para la temperatura de blanqueo, 80°C.
Una temperatura más alta tiene efectos negativos sobre el rendimiento. (13)

Tiempo.
El blanqueo se llevó a cabo en un tiempo que varió entre 1 y 2 horas. (14) (15)

Aditivos.
Para prevenir pérdidas de viscosidad se usó sal de Epson (MgSO₄ 7H₂O). Se recomienda agregar aproximadamente un 0,5% y como estabilizador es necesario agregar un 0,2% de DTFA. (16) (17).

Consistencia.
Se recomienda trabajar a una consistencia del 10%.

(18)

En una segunda parte del trabajo se desarrolló un diseño factorial central compuesto, considerando sólo las variables cuyo efecto es significativo.

Los experimentos planeados siguiendo la teoría de
Plackett-Burman, que permitieron trabajar con un número de variables igual al número de experimentos menos uno, en dos niveles; alto y bajo, o bien ausencia y presencia de un elemento.

En este caso al hacer el primer ensayo no hubo deslignificación. Por tanto fue necesario cambiar los niveles de las variables temperatura, tiempo, concentración de ácido, concentración de H₂O₂ y catalizador hasta llegar a los niveles máximos, a partir de los cuales se realizó un nuevo diseño experimental.

A continuación se presentan, para cada etapa, las variables que fueron consideradas en el diseño experimental y sus niveles:

<table>
<thead>
<tr>
<th>Variable</th>
<th>Minimo</th>
<th>Máximo</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) Tiempo (1era, 3era. etapa) hr</td>
<td>3</td>
<td>3.5</td>
</tr>
<tr>
<td>2) Temperatura (1era, 3era. etapa) ºC</td>
<td>80</td>
<td>90</td>
</tr>
<tr>
<td>3) % H₂O₂ (1era, 3era. etapa)</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>4) % H₂SO₄ (1era, 3era. etapa)</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>5) Tiempo 2da. etapa</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>6) Tamaño astillas</td>
<td>1/8"</td>
<td>1/4"</td>
</tr>
<tr>
<td>7) Razón L:M</td>
<td>4:1</td>
<td>5:1</td>
</tr>
</tbody>
</table>

Vacío máximo dado por equipo 740 mmHg

Con el diseño factorial reducido se determinó las variables que son estadísticamente significativas sobre las respuestas: Índice de Kappa, viscosidad, rendimiento, rechazo y blancura.

Con los resultados de este ensayo se pudo optimizar el proceso usando el diseño factorial central compuesto. (19)

3. Resultados y Discusión

Este trabajo se caracterizó por la dificultad para obtener resultados cuantitativos, debido a que en la serie de experimentos que se planificaron (cuyas condiciones fueron fijadas por antecedentes bibliográficos), no hubo deslignificación total, ni parcial, por lo que las astillas no presentaban cambios después del tratamiento.

Subiendo los niveles de las variables se logró obtener pulpa, con lo que se acotó el rango de las variables y se realizó un estudio factorial reducido para determinar los efectos de las variables individuales sobre las respuestas seleccionadas, para medir la influencia de las variables sobre el proceso.

A continuación se detallan los resultados del diseño factorial reducido.
<table>
<thead>
<tr>
<th>Número de exper.</th>
<th>Rendimiento clasificado</th>
<th>Rechazo</th>
<th>Índice Kappa</th>
<th>Blancura [% ISO]</th>
<th>Viscosidad intrínseca (ml/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>13.4</td>
<td>62</td>
<td>44.2</td>
<td>27</td>
<td>355</td>
</tr>
<tr>
<td>2</td>
<td>52.8</td>
<td>2</td>
<td>13.5</td>
<td>40</td>
<td>330</td>
</tr>
<tr>
<td>3</td>
<td>22.1</td>
<td>44</td>
<td>34.4</td>
<td>23</td>
<td>368</td>
</tr>
<tr>
<td>4</td>
<td>49.2</td>
<td>2</td>
<td>10.5</td>
<td>38</td>
<td>336</td>
</tr>
<tr>
<td>5</td>
<td>42.8</td>
<td>14</td>
<td>30.3</td>
<td>24</td>
<td>328</td>
</tr>
<tr>
<td>6</td>
<td>44.6</td>
<td>15</td>
<td>12.4</td>
<td>38</td>
<td>351</td>
</tr>
<tr>
<td>7</td>
<td>51.5</td>
<td>3</td>
<td>21.8</td>
<td>26</td>
<td>343</td>
</tr>
<tr>
<td>8</td>
<td>48.6</td>
<td>20</td>
<td>18.2</td>
<td>34</td>
<td>380</td>
</tr>
</tbody>
</table>

En el Gráfico 1 se presentan los efectos de las variables individuales sobre el rendimiento clasificado.

La variable de mayor trascedencia fue la carga de ácido sulfúrico, ya que este efecto se logra a través de la aceleración de formación del ácido peroxiacético, por esta misma razón el peróxido de hidrógeno también tiene un efecto considerable.

El menor tamaño de las astillas no favorece al rendimiento.

El tiempo y temperatura tienen un efecto positivo menos significativo en esta respuesta y la razón licor madera presenta un efecto negativo al aumentarse ya que se está diluyendo la especie reactiva, en este caso los iones hidroxonio.

El gráfico 2 muestra el efecto de las variables sobre el rechazo, favoreciéndose en todos los casos la disminución de éste, las variables más relevantes son la carga de ácido sulfúrico y el peróxido de hidrógeno al igual que en el caso anterior.

El efecto de las variables individuales consideradas en el proceso sobre el Índice de Kappa de la pulpa se muestran en el Gráfico 3. En este caso, tiene un efecto positivo considerable la carga de peróxido ya que es el agente oxidante que ataca los grupos de la lignina, la carga de ácido sulfúrico y la temperatura también tienen un efecto positivo importante aunque menos significativo.

La razón licor madera tiene en este caso un efecto negativo bastante pequeño.

En el gráfico 4 se observa los efectos de las
variables sobre la blancura de la pulpa. En general la pulpa tuvo un color claro comparada con una pulpa kraft, pero los valores medidos con el data color son bastante bajos ya que se ve afectado por un amarillamiento, lo que reduce el valor.

Las variables tiempo y temperatura no muestran efecto sobre la blancura, en cambio la carga de peróxido es la variable que tiene sobre esta respuesta un efecto positivo significativo ya que es un agente de blancura de buena calidad, en este caso se va produciendo junto con la deslignificación.

Una de las respuestas de mayor importancia es la viscosidad de la pulpa ya que esta da un índice de la longitud de las cadenas, teniendo así una referencia del grado de degradación de la pulpa.

En este caso los valores fueron calculados según la técnica estándar (20) y se obtuvo un resultado muy bajo con respecto a una pulpa kraft.

Para ver el verdadero efecto de degradación se procedió a medir directamente las propiedades físico-mecánicas de la pulpa.

<table>
<thead>
<tr>
<th>Número exper.</th>
<th>Factor Raspado</th>
<th>Factor Explosión</th>
<th>Longitud ruptura</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>39,5</td>
<td>27,5</td>
<td>4,6</td>
</tr>
<tr>
<td>3</td>
<td>18,4</td>
<td>12,1</td>
<td>3,1</td>
</tr>
<tr>
<td>4</td>
<td>48,1</td>
<td>28,9</td>
<td>4,1</td>
</tr>
<tr>
<td>5</td>
<td>34,7</td>
<td>22,0</td>
<td>4,5</td>
</tr>
<tr>
<td>6</td>
<td>45,2</td>
<td>30,6</td>
<td>5,0</td>
</tr>
<tr>
<td>7</td>
<td>41,9</td>
<td>27,0</td>
<td>4,7</td>
</tr>
<tr>
<td>8</td>
<td>50,5</td>
<td>33,2</td>
<td>5,1</td>
</tr>
</tbody>
</table>

Los resultados dieron valores más altos de los que se esperaba según la viscosidad de la pulpa. Si comparamos con valores de pulpa kraft de eucalipto sin refinar se tiene factor de raspado inferior; sin embargo, el factor de explosión y la longitud de ruptura tiene valores superiores (21) (22).

4. Conclusiones

- Es posible obtener pulpa química usando como agente deslignificante ácido peracético formado "in situ" a partir de ácido acético y peróxido de hidrógeno a presión atmosférica.
- La reacción de formación del ácido peracético se acelera considerablemente usando ácido sulfúrico como catalizador.
- El ácido sulfúrico ataca los carbohidratos con lo que se obtiene una pulpa parcialmente degradada.
- El ácido acético, es un ácido muy débil, el cual no deslignifica a baja temperaturas y presión atmosférica.
- Al lavar la pulpa con agua se diluye el solvente por lo que la lignina que es soluble en el ácido se hace insoluble en agua y precipita sobre la pulpa.
- No se logró obtener un producto de mercado usando rangos aceptables de peróxido de hidrógeno.

5. Bibliografía
6. Nimz, M.; Caster, R. obra citada (ref. 3).
8. Nimz, M.; Caster, R. obra citada (ref. 3).
9. Nimz, M.; Caster, R. obra citada (ref. 3).
13. Poppius, K.; Laamanen, L. obra citada (ref. 5).
14. Sundquist, J. obra citada (ref. 7).
15. Poppius, K.; Laamanen, L. obra citada (ref. 4).
17. Poppius, K.; Laamanen, L. obra citada (ref. 5).
18. Poppius, K.; Laamanen, L. obra citada (ref. 4).
Gráfico 1
Magnitud de las variables vs Efecto relativo de las variables sobre el rendimiento clasificado

Efecto relativo de las variables sobre el rendimiento clasificado
Gráfico 2

Magnitud de las variables vs Efecto relativo de las variables sobre el rechazo

Magnitud de las Variables

Efecto relativo de las variables sobre el rechazo
Gráfico 3
Magnitud de las variables vs Efecto relativo de las variables sobre el I.Kappa

Efecto relativo de las variables sobre el Nr. Kappa
Gráfico 4

Magnitud de las variables vs Efecto relativo de las variables sobre la blancura