

04 - 06 OUTUBRO 2010 TRANSMICK STANS

Biofuels in lime kilns

Niklas Berglin, Innventia

43º Congresso e Exposição Internacional de Celulose e Papel

43rd Pulp and Paper International Congress & Exhibition

Survey

- Main objective
 - Compiling and comparing mill experience from biofuels firing
- How?
 - Collection of basic data through a questionnaire
 - Interviews with operations managers
 - Mill visits
 - Focus on solid fuels

(Wadsborn, Berglin, Richards, 2007)
Download at www.varmeforsk.se

Two general approaches

Gasification

- Three installations in Sweden
- Experience also in Finland, Austria, Portugal
- Some of the largest biomass gasifiers in the world (20-30 MW)

Direct firing

Two installations in Sweden

Burners

- Powder burner used for bark or wood powder
- Powder transported with compressed air

- Fuel gas burner used with gas from gasifier
- Large volumes, hot gases

Billerud Karlsborg Mill

Operated 1986 - 2002

Södra Cell Värö Mill

 Rotary dryer fired with fuel gas from the gasifier

- Start-up in 1986
- One kiln fired with fuel gas from bark

Smurfit Kappa Kraftliner Mill

- Start-up in 1979
- Both kilns fired with powder

 Hammer mills used to produce powder finer than 1 mm

Examples of fuels used

		Bark	Tall oil	Peat	Sawdust
			pitch		
Composition					
С	% of DS	50.70	81.90	55.30	50.30
Н	% of DS	5.90	11.40	5.80	6.20
0	% of DS	39.90	5.80	36.00	42.80
S	% of DS	0.03	0.28	0.21	0.01
N	% of DS	0.48	0.06	1.10	0.10
Ash	% of DS	3.00	0.51	1.60	0.60
Lower Heating Value	MJ/kgDS	18.9	37.8	21.5	19.1

Installations at five Swedish mills

Biofuel System

Technology	powder	powder	gasifier	gasifier	gasifier
Fuel	bark/sawdust	sawdust	bark	sawdust	bark
Drying	recovery boiler flue gases	recovery boiler flue gases	hot gas gen. from the fuel	hot gas gen. from the fuel	hot gas gen. from the fuel
			gas	gas	gas
Millina	hammer mill	hammer mill	hammer mill	hammer mill	hammer mill
Availability	80%	90%	70%	75%	70-75%
Common causes of unavailability	replace	replace	fires, leakage in	fires in dry	fires, leaking
	hammers in mills, filter plugging, fires	hammers in mills, plugging of mill, fires	cell feeder, bed sintering	storage silo, fuel gas valve	fuel gas pipe

Effects in the kiln

Lime Kiln

Oil replacement max	100%	100%	100%	100%	65-70%
Oil replacement on annual basis					
(excl. tall oil)	35%	60%	40-45%	50%	40%
Emissions compared to oil					
- NOx	higher	unchanged	higher	unchanged	higher
- CO	unchanged	higher	unchanged	higher	unchanged
- H2S	unchanged	unchanged	unchanged		unchanged
- SO2	unchanged	unchanged	unchanged	higher	unchanged
Capacity compared to oil	lower	lower above	unchanged	lower	lower
		70%			
		replacement			
Ring formation	not a problem	every two	not a problem	not a problem	problems 6-8
		months			week intervals
Repair of lining	ca 3 times per	every two years	ca 3 times per	ca 2 times per	ca 1 time per
	year		year	year	year
Flue gas temp compared to oil	higher	higher	higher	unchanged	higher
Other fuels to lime kiln					
- tall oil	yes	no	no	no	no
- tall oil pitch	no	yes	yes	no	yes
- methanol	yes	no	not normally	no	not normally
- non-condensable gases	not normally	no	not normally	yes	not normally

Effects in the lime and liquor cycles

Liquor Cycle

Elquoi Oyolo					
Lime mud dryness compared to					
oil	lower	lower	lower	unchanged	lower
Lime quality	no obvious effects	with bark green/black lime mud, greenish lime	darker, greenish	unchanged	poor, more residual carbonate
Lime availability	90-93%	87-90%	85-90%		
Purchased lime, kg/ADt	5-6	4-5	ca 10	35	20-25
NPEs					
- P	increases	increases	increases	not a problem	increases
- Mg	increases	monitored	increases	not a problem	increases
- Si	monitored	monitored	small effects	not a problem	monitored
- Al	monitored	monitored	increases	not a problem	monitored
K	high levels	not a problem	not a problem	not a problem	not a problem

Summary

- 100 % biofuel firing fully possible
- Maintenance requirements increase considerably
 - major cause of unplanned stops is in the drying, e.g. fires are common
 - bed agglomeration common cause of shutdowns in the gasifiers
- Risk for decreased capacity
- Availability low compared to other parts of a modern mill
- Make-up lime requirements increase, in particular with bark firing

Lignin may be next biofuel for lime kilns

- Full scale trial April 2008
- 40 tonnes
- 2 days
- Up to 100 % oil replacement

The LignoBoost process

Trial preparation

- Installation of a silo with dosage screw and cell feeder
 - Hooked up to existing powder burner at the mill
 - -Separate oil burner
 - -Feeding with compressed air

Igniter (gas)

Methanol

Gas

Lignin powder

Oil

Swirl air

Axial air

Replacing all the oil!

Up to 100 % lignin

BET surface area and causticizing efficiency

- Decrease in surface area during trial indicates more hard-burned lime product
- Weak correlation between lignin firing and surface area

Conclusions

- Possible to achieve stable and continuous operation
- Possible to use standard powder burners and feeding equipment
 - Care needed to avoid dusting problems, and to provide sealing of bearings and shafts.
- Possible to produce lime with consistent quality
 - temperature reached in the burner zone sufficient for proper sintering of the lime nodules
- Same causticizing efficiency and same rate as during normal operation
- Based on the operators' opinion, the kiln can be easily controlled when firing lignin

