On cattle farms the eucalyptus in fencerows have not shown any tendency to reduce the growth of the pasture, but to the contrary have been valuable as shade for the cattle while they are producing an additional income for the farm. #### LITERATURE CITED Ladrach, W. 1978. Volume, green weight and dry weight tables for E. camaldulensis and E. grandis. Research Report No. 30. Carton de Colombia. 16 pp. ESTIMATIVA DA REMOÇÃO DA BIOMASSA E DOS NUTRIENTES EM PLANTAÇÕES DE Eucalyptus grandis EM REGIME DE MINI-ROTAÇÃO. F. Poggiani H.T.Z. do Couto ESALQ - USP W. Suiter Filho . CAFSB . Brasil. #### Resumo Vinte e quatro arvores, incluindo todas as classes de diâmetro de um talhão de Eucalyptus grandis (com 2,5 anos - 5333 ãrvores/ha)foram selecionadas, cortadas e seus componentes (folhas, galhos e tronco) pesados. Amostras dos componentes foram secos em estufa para determinação da umidade e para estabelecer as relações entre as folhas, os galhos e o tronco. Foram, também estimados os nutri entes removidos pelos componentes do estande. Observou-se que 9% da biomassa ē contida nas folhas, 7% nos galhos e 83% nos troncos. Todavia, 37% dos nutrientes ão contidos nas folhas, 10% nos galhos e 53% nos troncos. Face à baixa fertilidade dos solos de cerrado, principalmente com relação ao Pe K, seria oportuno evitar a remoção das folhas, galhos e cascas do "site". # BIOMASS AND NUTRIENT ESTIMATES REMO-VAL IN SHORT ROTATION INTENSIVELY CUL-TURED PLANTATION OF Eucalyptus grandis. ## Summary Twenty four trees, including all diameters of an Eucalyptus grandis stand (2.5 years old - 5333 trees/ha) were weighted by component parts (leaves, limbs and stems). Samples were oven-dried to determine noisture content and to establish: leaves, lines, crown, stem weight-relationships. Also macro and microelements of each tree component were analysed to estimate the nutrient contents removed by bolewood, harvest or complete trees utilization. Biomass distribution among the components of the stand is about 7% leaves, 7% limbs and 83% stems. However nutrients content in the stand biomass rre about 37% in the leave:, 10% in the lims and 53% in the stems. Because cerrado" soil (Savanna) is very low in available form of nutrients, mainly P and K, it is suggested to avoid the remotion of leaves, limbs and bark from the site. ## Introduction. Escalating costs of oil and energy shortage have forced wood users to consider maximizing total tree use. In fact, crown biomass and tree bark may become sources of energy. Therefore, intensive management of forest plan tations will increase significantly biomass production. In this area several papers have been published in Europe and North America (HANSEN & BAKER, 1979), however only a few studies were conducted in Brazil.Preliminar data have been published by POGGIANI, COUTO & SIMOES(1979) regarding biomass production . nutrient accumulation in forest stand of Bicalyptus grandis planted in the State of São Paulo. According to HANSEN & BAKER(1979), intensive management of plantations may significantly increase biomass production(3 to 5 times), however it increases also nutrient removal from the site and a strong fertilization must become an integral part of such management. POGGIANI(1980) reports some data regarding Eucalyptus and Pinus plantations in the states of São Paulo and Minas Gerais and believes to be primordial to evaluate silvicultural and ecological consequences of intensively cultured plantations and short rotations in tropical areas."Cerrado" soils(Brazilian Savannas) have in general low fertility, mainly in P and K and high concentrations of iron, manganese and aluminium. This papers discusses the distribution of biomass and nutrients in a stand of Eucalyptus grandis(2.5 years old). Equations predicting the dry biomass of the total tree and its components are presented. Nutrient removal by conventional bolewood harvest and complete tree utilization are also discussed. ## Material and Methods. Site and stand description. Seedlings of <u>Ducalyptus grandis(Hill ex-Maiden)</u> were produced from seeds provenient from Coff's <u>Harbour(Australia)</u> and planted in November 1976. The area of this experiment, located in Bom Despacho (Minas Ge rais) presents the tipical climate of Brazilian savannas: annual mean temperature around 19.5°C with occasional frost in the winter; annual rainfall about 1400 mm, with 80% of the total rain-fall concentrated on the hot-wet season(October-March). Each seedling planted in the initial spacing of 1.0 by 1.5 m was fertilized with 150 g of N-P-K(10:28:6) and B and Zn. The planting area was previously occupied by a kind of savan-na vegetation(Cerrado) and the soil is a clay latosol very deep and with a low content of avaliable nutrients such as: phosphorus 33 Kg/ha, potas sium 99 Kg/ha, calcium 312 Kg/ha and magnesium 220 Kg/ha(0-120 cm depth). The survival rate was around 80% at the end of the experiment. Field and laboratory methods. A random sample of 150 trees was selected from the 2.5 years old plantation of Bicalyptus grandis. D.B.H. and the total height of each tree were determined and the sample was divided in nine diameter classes. Two to four trees from each D.B.H. class from 2.0 to 11.0 cm (total 24 trees) were selected, felled and limbed. Each component of the tree(leaves, limbs and stem) was separated and weighted in the field. Three samples (about 150 g) of leaves and small sections of the limbs collected from the median part of the crown and a disk collected from the median part of the stem were weighted and sealed in ethylene bags for laboratory analysis.All the samples were oven-dried at 80% until constant weight.After this moisture content of the different components were determined and the dry weight of each tree calcula ted. Weighted values for moisture content in the samples were used to con vert component green weight to oven-dry weight. Chemical analyses. After oven-drying ,leaves, limbs and stem samples (sections of the disks including wood and bark taken at half of the tree total height) were ground in a Wiley mill and passed throigh a 20 mesh screen. The chemical ana lyses were performed according to SARRUGE & HAAG(1974). Nitrogen by the micro-Kjeldahl method, phosphorus by the vanadomolybdate method and all other nutrients were determined from the acid solution by atomic absorption spectrophotometry. Analytical Procedure. In order to estimate biomass content of the E.grandis stand, regression models were determined and the parameters were estimated using the S.A.S. (Statistical Analysis System) computer package. For choosing the best model, to estimate dry biomass components of the tree, a step-wise procedure was performed using as independent varia bles D.B.H. and total height, and their transformed values. Results and Discussion. Biomass production. Leaves, limbs and stems biomass as dependent variables of the D.B.H. are shown in Figure 1.Also tree total height as dependent variable of diameter is shown in Figure 2. Equations of the figure 1 show: that D.B.H. has good correls tion with stem and leaves biomass, but only regular correlation with limbs. However, the best equations found by step-wise procedure include also tree height as an independent variable usefull to improve the correlation. The following models proved to give the best fit. TABLE-1. BIOMASS DISTRIBUTION(Kg/ba) OK A <u>Ducalyptus grandis</u> STAND PUR DIFFERENT DIAMETER CLASSES. TABELA-1. DISTRIPLIÇÃO DA BIOMASSA (Kg/ba) NO TALHÃO DE <u>Ducalyptus grandis</u> HAS DIFFERENTES CLASSES DE DIÁMETRO. | D.B.H.
D.A.P.
(cm) | TREES
/ha
lrvores | LEAVES
Kg/ba
Follmas | LIMBS
Kg/ha
Galhon | CROWNS
K <u>u</u> 'ba
Copa | STEMS
Kg/ba
Tronco | TOTAL TREES Ke/ha Arvore total | | |--------------------------|-------------------------|----------------------------|--------------------------|----------------------------------|--------------------------|--------------------------------|--| | 1) 2.1-3.0 | 267 | 20.3 | 106.8 | 127.8 | 180.2 | 307.3 | | | 2) 3.1-4.0 | 213 | 36.4 | 76.4 | 112.8 | 339.0 | 451.8 | | | 3) 4.1-5.0 | 480 | 209.3 | 208.3 | 417.6 | 1,722.7 | 2,140.3 | | | 4) 5.1-6.0 | 747 | 564.0 | 404,1 | 968.1 | 5,354-5 | 6,322.6 | | | 5) 6.1-7.0 | 1,013 | 1,167.0 | 772.9 | 1,939.9 | 11,108.5 | 13,048.4 | | | 6) 7.1-8.0 | 1,013 | 1,661.3 | 1,170.0 | 2,831.3 | 15,833.2 | 18,664.5 | | | 7) 8.1-9.0 | 907 | 1,892.0 | 1,454.0 | 3,346.0 | 18,038.4 | 21,384.4 | | | 8) 9.1-10.0 | 480 | 1,350.2 | 1,039.2 | 2,389.4 | 12,855.6 | 15,275.0 | | | 9)10.1-11.0 | 213 | 717-4 | 553.4 | 1,270.8 | 6,849.2 | 8,120.0 | | | TOTAL | 5,333 | 7,617.9 | 5,785.1 | 13,403.0 | 72,311.3 | 85,714.3 | | | 5 | (100%) | (8:9%) | (6.7%) | (15.6%) | (84.4%) | (100.0%) | | a)Leaves dry biomass (Biomassa seca das folhas) Y= -0.0277+ 0.0020 D2 H R2= 0.94" b)Limbs dry biomass(Biomassa seca dos galhos) D=D.B.H. Y= 0.9448- 0.1049 H + 0.0330 D² R²= 0.80** c)Stem dry biomass (Biomassa seca do tronco) Y= -0.3145 + 0.0197 D-H R= 0.99 ** Table 1 shows the dry biomass data for all classes of diameter and the total biomass produced by the stand of E.grandis. Figure 1. Changes in dry biomass of <u>Eucalyptus</u> grandis components by tree diameters(D.B.H.) Figure-2. Tree total height as dependent variable of diameter(D.B.H.) If the complete tree utilization is considered, the total biomass amounts 85.7 tons per hectare. Conventional bolewood harvest of the stand would provide 72.3 tons of wood biomass (About 29 tons/ha per year). These data compared with several data presented by BAISM & BA - REK(1979) including biomass production per year of some fast growing trees species in temperate zones show clearly the strong potential of <u>Bucalyptus</u> for wood production in the tropics. Spacing has also a strong influence in blomass produced by short rotations. Very closed spacings, according to BELANGER & PEPPER(1978) increased blomass production in sycamore plantations, however the rate of survival became lower in very closed spacings (0.4 m). Presentely several experiments with closed spacings and short rotations are conducted by the Department of Silviculture of São Paulo University(Piracicaba). Preliminar data show the spacing 1.0 by 1.0 as the best for <u>Bucalyptus saligna</u> and <u>Bucalyptus alba</u> plantations, one year old, with a survival rate of 94%. Anyway, short rotation increase strongly the biomass production. Comparing the biomass produced in this experiment with an 8 years old stand of E-grandis planted in the conventional spacing-3.0 by 2.0 m -(BELLOTE, 1979 and POGGIANI, 1980) it is possible to conclude that short rotations have twice the potential for wood production than usual rotations for Encalyptus trees in Brazil. In short rotations biomass distribution is also different comparing with conventional plentations. According to BELLOTE(1979) an <u>Bucalyptus grandis</u> stand-2 years old and 3.0 by 2.0 m spacing-presented the following proportion for biomass. distribution in the different components of the trees: 68.3% in the stem, 12.2% in the leaves and 19.5% in the limbs. The present experiment found for <u>Exgrandis</u>(2.5 years old plantation)83.2% of the biomass in the stem, 8.9% in the leaves and 7.9% in the limbs. It indicates more clessed spacings in short rotations increase stem biomass. However more experiment must be carry out in this sense. In the table 2 are shown the dry biomass data per tree, for each class of diameter. Crown weight of the lower class is 41.3% of the total tree weight, althogh in the higher class crown weight is only 15.6% of the tree. This remark will be discussed in the item 3.4 TABLE -2. BIOMASS DISTRIBUTION ON THE AVERAGE TREE FOR DIPPERENT DIAMETER CLASSES. TABELA-2. DISTRIBUIÇÃO DA BIONASSA NA ÉRVORE MÉDIA DAS DIFEMENTES CLASSES | | DE DIAMET | RO. | • | | | | | | | | |---------|------------------|------------------------|-----------------------|---------------------|---------------------------|----------------------------|--|--|--|--| | CLASSES | D.B.H.
D.A.P. | LEAVES
Folhas
Kg | LIMES
Calhos
Kg | CROWN
Copa
Kg | STEM
Tronco
Kg | TOTAL THEE
LIVORS total | | | | | | 1 | 2.1-3.0 | 0.076
(6.6;;) | 0.400
(34.7%) | 0.476
(41.3%) | 0.675
(58.7 %) | 1.151 (100.0%) | | | | | | 2 | 3.1-4.0 | 0.171
(8.0;) | 0.357
(16.8%) | 0.528
(24.8%) | 1.594
(75.2%) | 2.122
(100.0%) | | | | | | 3 | 4.1-5.0 | 0.436
(9.8%) | 0.434
(9.7%) | 0.870
(19.5%) | 3•589
(80•5 ≸) | 4.459
(100.0≰) | | | | | | 4 | 5.1-6.0 | 0.755
(8.9%) | 0.541
(6.4%) | 1.296
(15.3%) | 7.168
(84.7%) | 8.464
(100.0%) | | | | | | 5 | 6.1-7.0 | 1.152
(8.9%) | 0.763
(5.9%) | 1.915
(14.8%) | 10.966
(85.2%) | 12.881
(100.0%) | | | | | | 6 | 7.1-8.0 | 1.640
(8.9%) | 1.155
(6.3%) | 2.795
(15.2%) | 15.630
(84.8%) | 18.425
(100.0%) | | | | | | 7 | 8.1-9.0 | 2.085
(8.8%) | 1.604
(6.8%) | 3.689
(15.6%) | 19.888
(84.4%) | 23.577
(100.0%): | | | | | | 8 | 9.1-10.0 | 2.813
(8.8%) | 2.165
(6.8%) | 4.978
(15.6%) | 26.845
(84.4%) | 31.823
(100.0%) | | | | | | 9 | 10.1-11.0 | 3.368
(8.8%) | 2.598
(6.8%) | 5.966
(15.6%) | 32.156
(84.4%) | 38.122
(100.0%) | | | | | Nutrient concentration in the tree components. Keans and standard errors of nutrient concentration are included in table-3.For all the components nutrient concentrations in the biomass are as follows: N>K>Ca>MgZP>Mn>Fe>Zn>Cu. Nutrients concentration is for all the elements higher in the leaves than in the stem: 12 times for hitrogen, 4.5 times for phosphorus, 2.8 times for potassium, 6.5 times for calcium and 9.5 times for magnesium. In general, nutrient concentrations found in this experiment are similar to the concentrations presented by HAAG et alii(1976) and BELLOTE(1979) for Excradis plantations in "Cerrado" soil, however they are lower than concentrations presented by LUBRANO(1967) for Excelyptus viminalis planted in Italy. # TABELA-3. MÉDIA E ERRO PADRÃO DA COVCENTRAÇÃO DE MUTRIENTES NOS COMPONENTES DAS ARVO RES DE <u>Bucalyptus grandis</u>(2,5 ANOS) TABLE-3. NEAN AND STANDARD ERROR OF NUTRIENT CONCENTRATIONS IN THE TREES COMPONENTS OF Dicalyptus grandis.(2.5 Years old) | COMPONENTS | | | E | LENENTS | | | | | | |---------------------------|----------------------------|----------------|---------------------|----------------------------|----------------------------|--------------------------|------------------------|--------------------|------------------------| | Componentes | | P | ĸ | Ca | Ng | F. | Cu | Жn | Zn | | | | | 7º | | | | ppe | • | | | LEAVES
Folhas
S.Er. | 1.850
•
0.020 | 0.110
0.012 | 0.650
 | 0.590
<u>±</u>
0.060 | 0.200
<u>*</u>
0.014 | 296.0
±
33.0 | 4.0
±
0.2 | 953.0
102,0 | 12.5
2
0.6 | | LIMBS
Calhos
S.Er. | 0.460
<u>±</u>
0.017 | 0.040
0.003 | 0.370
0.030 | 0.260
±
0.023 | 0.040
0.007 | 93.0
<u>*</u>
10.1 | 3.6
<u>*</u>
0.1 | 396.0
26.3 | 5.7
<u>*</u>
0.4 | | Troncos | 0.150
<u>*</u>
0.009 | 0.024 | 0.230
±
0.007 | 0.090
0.006 | 0.002 | 38.6
<u>•</u>
2.4 | 1.5
±
0.1 | 185.0
±
13.8 | 5.3
±
0.3 | Certainly N-P-K fertilization in the planting (150 g -10:28:6) makes available a regular supply of N and K, but P is strongly fixed by aluminium in the soil(pH. 4.6), that is also very poor in calcium. Also high levels of Mm and Fe were observed in the leaves due to soil acidity, however no symptoms of toxicity were evident in the trees. Nutrient content in the biomass of the stand. Recently in Brazil some foresters believe to be suitable whole tree utilization, mainly for energy supplies. In this sense several researches are conducted in Brazil and in other countries. A critical evaluation about this problem was published by SMITZER, MELSON & HINESLEY (1978) but only for temperate zone. It is necessary to point out the problem is more complicated in the fragile ecosystems of the tropics, because the ecological and economical implications. Table 4 presents the data on biomass and nutrients distribution in the stand. TABLE-4. BIOMASS AND MUTRIENTS CONTENT(Kg/ha)IN AN <u>Bicalyptus grandis</u> STAND,2.5 YEARS OLD(5,333 TREES/ha). TABELA-4. BIONASSA E NUTRIENTES CONTIDOS(Kg/ha) NUN TALHÃO DE <u>Dicalyptus grandia</u> AOS 2,5 ANOS DE IDADE-(5-333 ARYORES/ha) | COMPONENTS
Componentes | BIONASS
Biomassa | ¥ | P | r | Ca | Иg | Fa | Cu | Жn | Zn | TOTAL NUTR. | |---------------------------|---------------------|-------|------|-------|-------|------|-----|------|------|------|-------------| | TOTAL TREE Arvore tot. | 85,714.3 | 275•9 | 28.0 | 237.2 | 125.0 | 32.7 | 5.5 | 0.16 | 22.8 | 0.52 | 727.7 | | LEAVES
Folhas | 1,617.9 | 140.9 | 8.4 | 49•5 | 44.9 | 15.2 | 2.2 | 0.03 | 7.2 | 0.09 | 268.4 | | LIMBS
Calhos | 5,785.1 | 26.6 | 2.3 | 21.4 | 15.0 | 2.3 | 0.5 | 0.02 | 2.3 | 0.03 | 70.4 | | CROWN
Copa | 13,403.0 | 167.5 | 10.7 | 70.9 | 59.9 | 17.5 | 2.7 | 0.05 | 9.5 | 0.12 | 338.8 | | STEM
Tronco | 72,311.3 | 108.4 | 17.3 | 166.3 | 65.1 | 15.2 | 2.8 | 0.11 | 13.3 | 0.40 | 388.9 | | | | | | | | | | | | | | TABLE-5. AVERAGE OF BIOMASS(Kg)AND MUTTIENTS CONTENT(g) PER TREE OF Bucalyptus gratis, 2.5 YEARS OLD. TABELA-5. MEDIA DA BIONASSA(IA) E DO CONTEUDO DE MUTRIENTES(g) POR ÁRVORE DE <u>Dicalyptus</u> grandia aos 2,5 anos de idade. | | BIOMASS | ¥ | P | <u> </u> | K Ca Mc | | Pe | Cu | Mn | 2n | TOTAL FUTRILITS Total nutrientes | |------------------|-------------------|------|-----|----------|---------|-----|-----|-------|-----|-------|----------------------------------| | Componentes | Bionassa | | | | | | | | | | | | TOTAL TREE | | 51.7 | 5.2 | 44.5 | 23.4 | 6.0 | 1.0 | 0.038 | 4.3 | 0.0,4 | 136.2
(100%) | | LEAVES
Foldas | 1.428
(8.9%) | 26.4 | 1.6 | 9•3 | 8.4 | 2.8 | 0.4 | 0.005 | 1.4 | 0.018 | 50.3
(36.9%) | | LIMBS
Calhos | 1.084 | 5.0 | 0.4 | 4.0 | 2.8 | 0.4 | 0.1 | 0.004 | 0.4 | 0.006 | 13.1
(9.6%) | | Crown
Copa | 2.512
(15.6%) | 31+4 | 2.0 | 13.3 | 11.2 | 3.2 | 0.5 | 0.009 | 1.8 | 0.024 | 63.4
(46.5≸) | | STEM
Tranco | 13.559
(84.4%) | 20.3 | 3.2 | 31.2 | 12.2 | 2.8 | 0.5 | ი.020 | 2.5 | 0.070 | 72.8
(53.5≸) | Leaves and limbs constitute 15.6% of the total biomass, but con - tain 46.6% of the nutrients (338.8 Kg/ha). Stems content is 388.9 Kg/ha.Nitrogen is the nutrient highly accumulated in the crown and potassium in the According to POCGIANI(1980) total biomass production of a stand of <u>E.grandis</u> in short rotation intensively cultured plantation might reach, in an eight years period, twice the production of a conventional rotation stand(3.0 by 2.0 m spacing). However the short rotation removes three times more nutrients than conventional plantations. With the purpose to reduce the strong nutrient remotion by short rotations other alternatives of management and exploitation must be developed. Moreover new species provenances and clones with a higher "utilization efficiency" for closed spacings and short rotations must be introduced in silviculture practices. According to HANSEN & BAKER(1979) we use "utilization efficiency" to express the weight of biomass produced per unit weight of nutrients. Fertilization versus nutrients removed by trees harvest. As was shown before, the "Oerrado" soil where this experience was laid down is poor in available nutrients(P-33 Kg/ha,K-99Kg/ha,Ca-312 Kg/ha and Mg-220 Kg/ha.).Comparing nutrient content of above ground biomass of <u>Eucalyptus</u> stand, as shown in Table 5, with soil nutrients(O-120 om depth), it can be seen that this soil does not support for a long time a forest plantation intensively exploited. In fact, nutrient content in the soil is almost equivalent to nutrient content in the biomass of the <u>Bucalyptus</u> stand. Mainly for potassium, phosphorus and calcium, will be necessary to pay a supplementary at tention. In such case is necessary to supply the nutrients removed by harvesting, with a suitable fertilization to maintain the stand productivity. In this experiment each tree received as fertilizer 150g of N-P-K(10:28:6) corresponding to 15 g of nitrogen, 18.3 g of phosphorus and 7.5 g of potassium. Probably nitrogen is also fixed from the air by symbiotic and asymbiotic process, however a large rate of P is fixed by aluminum in the soil and potassium is accumulated in the plant tissues. Low content of potassium in the soil can become very critical for the next rotations. Calcium is also a scarce element in the soil and must be supplied by fer tilization. This calcium scarcity is evident if we compare its concentration in the trees tissues with some data reported by LURRAWO(1967) for <u>Eucalyptus viminalis</u> in Italy. Probably soil liming before planting may result in more available nutrients for root systems and better economy in fertilizers. #### Final considerations. Some considerations are also essential to preserve nutrients in the site. Leaves and crown exploitation seem to be not convenient under an ecological and silvicultural point of view, mainly for dominated trees that present a large proportion of crown biomass with high rate of nutrients. Therefore, to mitigate the loss of soil ferblity in tropical zones, would be suggested to avoid crown exploitation mainly in short rota - tion regime. Another suggestion would be to encourage research for species and clones selection with high "utilization efficiency" in order to improve biomass production with a lower nutrient remotion from the site. According to BAKER & COOPER(1978) and BOWERSOX & WARD(1976) considerable variation in nutrient concentration has been noted in eastern cottonwood and in young hybrid poplars growing in closed spacing. Fertilization studies are also primordial to develop more appropriated know-how for tropical soils of the Brazilian savannas. #### Literature Cited. BELANGER, R.P. & PEPPER, W.D. -Seedling density influences the early growth of planted sycamore. Forest Science, Madison, 24(4):193-6,1978. BELLOTE, A.F.J. —Concentração, acumulação e exportação de nutrientes pelo <u>Eucalyptus grandis (Hill, ex-Maiden) em função da idade</u>Piracicaba, 1979. (Tese-Mestrado-ESALQ/USP). BLACKMON, B. G.; BAKER, J. B. & COOPER, E. T. -Biomass and nutrient accumulation in the geographic sources of eastern cottonwood. Agronomy Abstracts. 1978 Annual Meeting p. 186. BOWERSON, J. W. & WARD, W. W. - Growth and yield of close-spaced young by - byid poplars. Forest Science, Madison, 22(4): 449-59,1976. HAAC, H.P. et alii . -Análise foliar em cinco espécies de sucaliptos. IFEF, Piracicaba, (13):99-116, 1976. HANSEN, E.A. & BAKER, J.B. -Biomass and nutrient removal in short rotation intensively cultured plantations. Annual meeting North American Poplars Council, Thompsonville, 1979 p. 130-51. LUBRANO,L. -Ricerche sulle esigenze nutritive di alcune speci di eucalitti. <u>Pubblicazioni Gentro di Sperimentazione Agricola e Forestale</u>Boma, 11:1-15 1972. POGCIANI, F.-Florestas para fins energéticos e ciclagem de nutrientes. Série técnica IPEF, Piracicaba, 1(2): D1-D11,1980. POGCIANI, F.; COUTO, H.T.Z. do & SIMÕES, J.W. — Aspectos ecológicos das minirotações e do aproveitamento dos resíduos florestais. Circular Técnica IPEF, Piracicaba, (74):1-7,1979. SARRUCE, J. R. & HAAG, H. P. Análise química das plantas . Piracicaba, ESALQ/USP 1974. 56p. SWITZER, G.L.; NELSON, L.E. & HINESLEY, L.E. - Effects of utilization on nutrient regimes and site productivity. In: Mc MILLIN, C.W. - Complete tree utilization of southern pine. Madison, Forest Products Research Society, 1978 p.91-102 1978.